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Accumulating empirical evidence suggests a role of Bayesian inference and learning for shaping neural re-
sponses in auditory and visual perception. However, its relevance for somatosensory processing is unclear.
In the present study we test the hypothesis that cortical somatosensory processing exhibits dynamics that
are consistent with Bayesian accounts of brain function. Specifically, we investigate the cortical encoding of
Bayesian surprise, a recently proposed marker of Bayesian perceptual learning, using EEG data recorded
from 15 subjects. Capitalizing on a somatosensory mismatch roving paradigm, we performed computational
single-trial modeling of evoked somatosensory potentials for the entire peri-stimulus time period in source
space. By means of Bayesian model selection, we find that, at 140 ms post-stimulus onset, secondary somato-
sensory cortex represents Bayesian surprise rather than stimulus change, which is the conventional marker
of EEG mismatch responses. In contrast, at 250 ms, right inferior frontal cortex indexes stimulus change. Fi-
nally, at 360 ms, our analyses indicate additional perceptual learning attributable to medial cingulate cortex.
In summary, the present study provides novel evidence for anatomical-temporal/functional segregation in
human somatosensory processing that is consistent with the Bayesian brain hypothesis.

© 2012 Elsevier Inc. All rights reserved.
Introduction

The Bayesian brain hypothesis postulates that the brain uses prob-
abilistic inference for perception and perceptual learning (Doya et al.,
2007). These mechanisms can be implemented using Bayesian infer-
ence based on an internal generative model, which comprises a distri-
bution over sensory data given an external cause (the sensory data
likelihood) and a prior distribution over different causes (Friston,
2010; Knill and Pouget, 2004). Perception is modeled as the process
of computing a posterior distribution over causes using the genera-
tive model and sensory input, while perceptual learning is explained
as the updating of the brain's representation of the prior distribution
based on the inferred posterior distribution over causes (Friston,
2003; Kersten et al., 2004).

It has been suggested that these Bayesianmechanisms are encoded by
neuronal populations whose responses to novel sensory input are inter-
preted as dynamics induced by the violation of prior expectations
(Mumford, 1992; Rao andBallard, 1999; Strange et al., 2005). Typical neu-
robiological markers of this violation are EEG novelty responses such as
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the auditory mismatch negativity (aMMN) (Näätänen et al., 2011), the
P300 (Polich, 2007), or the dishabituation of laser evoked-potentials
(Mouraux and Iannetti, 2008; Wang et al., 2010). In the framework of
the Bayesian brain hypothesis, one way to formally quantify the novelty
of sensory input is Bayesian surprise, a recently proposed information
theoretic quantity (Baldi and Itti, 2010; Itti and Baldi, 2009). Bayesian sur-
prise quantifies the effect sensory input has on the internal generative
model as the divergence between the encoded prior and posterior distri-
bution over causes. Representing Bayesian surprise may enable an ob-
server like the brain to efficiently and dynamically encode the statistical
(ir)regularities of its environment.

While empirical evidence suggests a role of Bayesian perceptual
learning for shaping neural responses in auditory and visual perception
(Garrido et al., 2009a, 2009b, 2009c; Harrison et al., 2007; Rao and
Ballard, 1999), its relevance for somatosensory processing is unclear.
Here, we address the hypothesis that somatosensory processing, as
assessed with somatosensory mismatch responses (sMMRs) in EEG,
exhibits dynamics that are consistent with Bayesian theories of percep-
tual learning and specifically, the encoding of Bayesian surprise.

Although less studied than the aMMN, a number of investigations
have previously described novelty or mismatch responses for somato-
sensory evoked potentials (SEPs) (Näätänen, 2009). Consistently, a
fronto-parietal negative shift between 100 and 200 ms contralateral to
the side of stimulation has been observed for unexpected stimuli
(Akatsuka et al., 2007b; Kekoni et al., 1997; Kida et al., 2004;
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Restuccia et al., 2007; Shinozaki et al., 1998; Spackman et al., 2007,
2010), while some studies additionally reported earlier mismatch re-
sponses 60 to 90 ms after stimulus onset (Akatsuka et al., 2007a,
2007b; Götz et al., 2011). Further, in analogy to other sensory modali-
ties, somatosensory oddball stimuli that capture the observer's atten-
tion elicit a parietal positive response at about 300 ms post-stimulus,
commonly referred to as P300 (Restuccia et al., 2009; Tarkka et al.,
1996).While the precise neural generationmechanismof the sMMR re-
mains to be established, it provides a unique experimental tool to inves-
tigate perceptual learning in the somatosensory system from a Bayesian
perspective.

We investigate our hypothesis by capitalizing on recently devel-
oped model-based analyses of single-trial EEG or fMRI activity
(Friston and Dolan, 2010; Mars et al., 2008, 2010). To derive single-
trial estimates of Bayesian surprise we employ a sequential Bayesian
stimulus probability learning algorithm and, to account for the as-
sumption that the brain uses finite time-windows to dynamically up-
date its generative model, we employ a forgetting mechanism in the
learning scheme (Harrison et al., 2011; Kiebel et al., 2008a). Using
EEG data from 15 subjects, we perform computational modeling of
evoked somatosensory potentials on the source level and for the entire
peri-stimulus time period. By means of Bayesian model selection, we
identify both cortical substrates and critical time windows of ongoing
Bayesian surprise encoding in the cortical-temporal hierarchy of so-
matosensory processing.

Materials and methods

Participants

Fifteen healthy volunteers (21–31 years, six females) participated
in the experiment after providing written informed consent. The
study was approved by the Ethical Committee of the Charité Univer-
sity Hospital Berlin and corresponded to the Human Subjects Guide-
lines of the Declaration of Helsinki.

Stimuli

Electrical stimuli of 0.2 ms duration were delivered to the left medi-
an nerve via adhesive electrodes attached to the wrist. Two intensity
levels (low/high stimulus amplitude) were adjusted on an individual
subject basis to account for subject specific sensory thresholds. The
low stimulus intensity (mean 4.0±1.6 STDmA) was determined to
be close to detection threshold but clearly noticeable for every stimulus
replication. The high stimulus intensity (6.0±2.2 STD mA) was chosen
to bemarkedly distinguishable from the low stimulus intensity, but not
painful and below the motor threshold.

Experimental procedure

Upon familiarization with the experimental stimulation, partici-
pants underwent nine to ten experimental runs of an oddball-like
roving paradigm (Baldeweg et al., 2004): stimuli were delivered in
Fig. 1. Experimental paradigm. Electrical stimuli of two amplitudes, high (A1) and low (A0),
identical stimuli, i.e. of either high or low amplitude, comprised 2, 4, 8 or 16 stimuli. For clari
each train of identical stimuli was labeled a deviant. To compare deviant (red) and standard
preceding a deviant stimulus were labeled standard. This experimental paradigm is an ad
(Baldeweg et al., 2004).
consecutive trains of alternating stimulus intensity with a constant
inter-stimulus interval of 650 ms (Fig. 1). In contrast to classical odd-
ball paradigms, which comprise the repeated presentation of stan-
dard stimuli occasionally interrupted by the presentation of
physically different deviant stimuli (Näätänen et al., 1978), in roving
paradigms stimuli with different physical properties can take on the
role of both deviant (oddball) and standard stimulus. By averaging
over deviant and standard potentials evoked by physically different
stimuli, this allows to discount differential responses to the physical
stimulus per se in observed mismatch effects.

The length of each stimulus train was chosen at random from the
set {2,4,8,16}, using equal probabilities. The participants were
instructed to count the number of stimulus trains per experimental
run, i.e., to attend to the changes from low to high and high to low
amplitude. Thereby, the applied paradigm differed from classical mis-
match tasks in so far that participants directed their attention to the
stimuli. To render the counting task nontrivial, the number of stimu-
lus trains in each run was sampled at random from a normal distribu-
tion with expectation 72 and standard deviation 5. Consequently, ca.
72 stimulus trains corresponded to roughly 500 stimuli delivered per
run, and to about 5000 stimuli per subject in total. As the first stimu-
lus in a stimulus train (high or low stimulus amplitude) is, by defini-
tion, a deviant, approximately 720 deviant responses were recorded
per subject. After each experimental run, the subjects reported the
number of experimental trains and were informed about the correct
outcome.

EEG recording and pre-processing

EEG data were recorded using a 64-channel active electrode sys-
tem at a sampling rate of 2048 Hz (ActiveTwo, BioSemi), with elec-
trodes placed in an elastic cap according to the extended 10–20
system. Individual electrode locations were registered with respect
to three fiducial markers (left and right preauricular points
and nasion) using an electrode positioning system (Zebris Medical)
to improve subsequent source space analyses. All further data pre-
processing steps were performed using Statistical Parametric Map-
ping (SPM8) (Litvak et al., 2011). Specifically, the data were down-
sampled to a sampling rate of 512 Hz, referenced against average
reference, band-pass filtered (1 to 40 Hz) and corrected for eye-
movements using a topological confound approach originally devel-
oped by Berg and Scherg (1994) and implemented in SPM8 (Litvak
et al., 2007). The data were epoched using a peri-stimulus time inter-
val of −100 ms to 600 ms. Trials containing amplitudes larger than
150 μV were excluded from further analysis. SEPs for experimental
conditions of interest were computed using standard averaging and
were averaged across subjects to yield grand mean SEPs. The experi-
mental conditions of interest were 1) the somatosensory evoked po-
tential averaged over all stimuli, abbreviated ‘SEP’, 2) the response to
deviant stimuli, averaged across high and low intensity stimuli, ab-
breviated ‘Deviant’, 3) the response to stimuli immediately preceding
deviant stimuli, averaged across high and low intensity stimuli, ab-
breviated ‘Standard’. It should be noted that this nomenclature differs
were delivered to the median nerve with an inter-stimulus interval of 650 ms. Trains of
ty only the cases of trains of 2 and 4 stimuli are shown in the figure. The first stimulus in
(blue) responses based on the same number of trials, only those stimuli immediately
aptation of a previously established roving paradigm for the somatosensory domain
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from standard mismatch negativity paradigms, which usually define
as ‘Standard’ stimuli all non-deviant stimuli. However, defining the
‘Standard’ condition in this manner allows estimating both ‘Deviant’
and ‘Standard’ conditions from the same number of trials. Further,
by collapsing the ‘Deviant’ and ‘Standard’ conditions over both stimu-
lus amplitudes allows discounting differential responses to the phys-
ical properties of the stimulus per se.

Anatomical network identification

As we aimed to perform the model-based trial-by-trial analyses
based on anatomically specific substrates (rather than on the elec-
trode level), a combination of previous findings on the generators of
the SEP as well as source reconstructions of the present data set
was used to identify a set of six brain regions involved in the genera-
tion of the trial-by-trial EEG response. The anatomical localization of
these sources enabled us to project the trial-by-trial electrode space
EEG data onto a set of oriented equivalent current dipoles (ECDs)
placed at corresponding locations as described below. Previous re-
search established that the cortical SEP comprises the succession of
(at least) three EEG components reflecting different processing stages
of somatosensory information (Niedermeyer and Silva, 2004; Thees
et al., 2003): 1) the parietal N20 reflecting a dipolar generator in pri-
mary somatosensory cortex (S1) situated in the posterior bank of the
rolandic fissure, 2) the fronto-central P45/N60 complex of unclear or-
igin, and 3) the parieto-temporal N140 peaking in the 60–160 ms la-
tency range, presumably reflecting additional stimulus processing in
secondary somatosensory cortex (S2). The localization of contralater-
al S1 and bilateral S2 for the current data set is hence obligatory.
Moreover, experimental evidence suggests the involvement of frontal
regions in the generation of mismatch responses, e.g., for the aMMN
(Näätänen et al., 2011; Rinne et al., 2000, 2005, 2006; Tse
and Penney, 2008). We thus were also interested in monitoring
trial-by-trial activity in frontal cortex, the exact anatomical location
being derived from source reconstruction of the deviant response of
the present data set. Finally, cingulate cortex has been repeatedly im-
plicated in the generation of oddball as well as P300 responses across
a wide range of experimental paradigms (Linden, 2005; Thees et al.,
2003), motivating the inclusion of a cingulate source.

In summary, strong anatomical–functional evidence suggests the
inclusion of contralateral primary and bilateral secondary somatosen-
sory, bilateral inferior frontal, and cingulate cortex in a six-dipole
model of single-trial EEG responses for the current paradigm. To iden-
tify the precise anatomical substrates in the current study in a data-
informed manner, we employed a two-stage procedure to obtain
MNI coordinates and moment vectors for a multiple dipole model:
1) Using grand mean event-related potentials (ERPs) a distributed
source localization of the regions suggested by the literature was per-
formed to obtain MNI coordinates, and 2) the moments of ECDs locat-
ed at these MNI coordinates were fitted, again based on grand mean
ERPs. The distributed source localization and dipole orientation fitting
procedures are detailed below. Both the condition-specific grand
mean ERPs and time windows used in these analyses were chosen
to be consistent with previous findings on the neural generators of
somatosensory and mismatch ERPs as discussed in the section
above and are documented in detail in Tables 1 and 2. The final set
of six location and six moment vectors was subsequently used to pro-
ject the data of each trial, for each subject, to anatomical brain space.

Statistical distributed source localization

At the first stage, the sources of the evoked EEG activity were de-
termined using the distributed source reconstruction algorithm as
implemented in SPM8. A forward model was constructed for each
subject using a 8196 vertex template cortical mesh co-registered at
the individual electrode positions via three fiducial markers. The
lead field for the forward model was generated using the three-shell
BEM EEG head model as provided by SPM8. Source estimates were
computed on the canonical cortical mesh using multiple sparse priors
(Friston et al., 2008) under group constraints (Litvak and Friston,
2008). Source power increases were statistically analyzed at the
group level using one-sample t-tests. For display purposes statistical
parametric maps were thresholded at pb0.001 (uncorrected), and
random field theory was used to control for family-wise error in
source space (Kiebel and Friston, 2004; Worsley, 1994). Finally, the
SPM Anatomy toolbox was employed to establish cytoarchitectonic
references (Eickhoff et al., 2005). This procedure enabled the reliable
identification of four of the six sources (Table 1). The exact procedure
used for obtaining these four sources and the remaining two sources
to form a six-dipole model is described below under results.

Dipole fitting and timecourse extraction

At the second stage, the six obtained MNI source locations were
used to fit ECDs to project the evoked electrode data into source
space. To this end, grandmean group evoked potentials were subjected
to the Variational Bayes — Equivalent Current Dipole (VB-ECD) algo-
rithm implemented in SPM8 (Kiebel et al., 2008b). For each source, ei-
ther a single dipole or a symmetric dipole pair was chosen with tight
location priors centered on the sets of coordinates obtained from the
distributed source analysis, unless otherwise noted. The moment pa-
rameters of the respective dipolar sources were then optimized using
VB-ECD, and the posterior moment expectations normalized to a Eu-
clidean norm of 1. The dipole specific SEPs, prior locations andmoment
expectations, as well as the peri-stimulus time-points analyzed are
listed in Table 2. Finally, the trial-by-trial event-related electrode
space data were projected onto the set of fixed and oriented ECDs
using SPM8's spm_eeg_extract_waveforms.m function (Litvak et al.,
2011).

Functional model of evoked source activity

To relate single-trial source activity to Bayesian principles of per-
ceptual learning, we computed Bayesian surprise for each single
trial using a sequential (online) Bayesian learning algorithm of sti-
mulus probabilities (Bishop, 2007) (pp. 68–78). Briefly, the model as-
sumes that the brain implements a trial-by-trial Bayesian parameter
learning scheme starting from an uninformative prior and computes
Bayesian surprise as the divergence between the parameter prior
and posterior probability density functions (PDF) at the single-trial
level. Moreover, variants of this model assume that the brain only in-
corporates observed trials which lie in a variable time-window of the
close past into its estimation of the parameter PDF, where the length
of the time-window is governed by an exponential forgetting (i.e. rel-
ative down-weighting) of stimulus observations in the distant past.

Formally, the model employed here assumes that the probability
of observing a low (S=0) or high (S=1) intensity stimulus on the
n-th trial is described by a Bernoulli distribution with expectation
μ∈ [0,1]

p Sð Þ ¼ μS 1−μð Þ1−S
: ð1Þ

Here μ is the probability of observing a stimulus of high intensity
on the n-th trial. To model the initial uncertainty about the parameter
μ the model assumes a uniform beta prior distribution over μ, which,
on each trial, is sequentially updated according to the observed data
likelihood to form a posterior distribution over μ. The posterior distri-
bution over μ after observing l stimuli of low intensity and m stimuli
of high intensity, i.e. after l+m trials in total, is given by

p μjm; lð Þ ¼ Γ mþ lð Þ
Γ mð ÞΓ lð Þ μ

m 1−μð Þl ð2Þ



Table 1
Distributed source reconstruction statistics.

Label ERP PST window p-Cluster (FWE) Z-value p-Peak (FWE) MNI coordinates Cytotechtonic reference

S1 SEP 18–25 ms b0.001 5.87 b0.001 48 −30 50 Right postcentral gyrus
5.78 b0.001 36 −30 64 Area 3b (90% [40–100%])
5.76 b0.001 44 −32 60 Area 1 (50% [40–80%])

42 −31 58 Area 4a (20% [0–20%])
rS2 SEP 30–160 ms 0.001 4.14 0.074 62 −34 12 Right superior temporal gyrus

IPC (PFcm): 30% [10–40%]
IPC (PF): 20% [0–50%]
(Activation extending into OP1 (60% [20–60%]))

lS2 0.117 3.92 0.151 −60 −44 12 Left superior temporal gyrus
rIFG Deviant 340–360 ms 0.001 3.91 0.165 48 16 12 Right inferior frontal gyrus

3.82 0.214 36 24 8 (pars triangularis)
3.81 0.220 40 30 2 Area 45 40% [20–50%]

41 23 7

Column 1: Based on previous findings in the literature, the group distributed source reconstruction method implemented in SPM8 (Litvak and Friston, 2008) was used to determine
the MNI coordinates of four sources of interest (S1, rS2, lS2, rIFG). Column 2: The statistical evaluation was based on reconstructing the source activity of the ‘SEP’ and the ‘Deviant’
waveform. Column 3: Peri-stimulus times of interest. These were derived from the grand mean, see Fig. 3 and text. Column 4: Corrected p-values obtained by using one-sample t-
tests and family-wise error (FWE) correction at the cluster level (Worsley, 1994). Columns 5–7: Up to three peak MNI coordinates more than 8 mm apart, their corresponding Z and
p-values at the voxel level. For multiple peak clusters, the arithmetic mean of the peak coordinates was used as the source MNI coordinate, set in bold in column 7. These coordi-
nates were entered into SPM8's Anatomy toolbox (Eickhoff et al., 2005) to obtain an anatomical and probabilistic cytotechtonic reference, as reported in column 8.
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where Γ : R→R denotes the gamma function. Corresponding to the
sequential Bayesian learning approach, this distribution then acts as
the prior distribution for inference on the (l+m+1)-th trial.

In order to implement a forgetting kinetic, instead of using the ac-
cumulative stimulus counts ln and mn on the ln+mn=n-th trial, the
model employed here weights the stimulus counts with an exponen-
tial function over trials, such that

lwn
¼ ∑n

i¼0 exp −1
τ

n−ið Þ
� �

li ð3Þ

and

mwn
¼ ∑n

i¼0 exp −1
τ

n−ið Þ
� �

mi ð4Þ

yield the weighted stimulus counts mwn
, lwn

at the n-th trial and τ>0
denotes the time constant of the forgetting kinetic. This results in a
Table 2
Equivalent current dipoles.

Label ERP PST point Location prior exp. Mo

S1 SEP 21 ms 42 −31 58 0
(Informative) (Un

rS2 SEP 140 ms 62 −34 12 0
(Informative symmetric pair) (Un

lS2 −62 −34 12 0
(Informative symmetric pair) (Un

rIFG Deviant 351 ms 41 23 7 0
(Informative symmetric pair) (Un

lIFG −41 23 7 0
(Informative symmetric pair) (Un

MC Deviant–standard 351 ms 0 0 0 0
(Uninformative) (Un

After MNI coordinates for the anatomical regions of interest had been determined (Table 1
informative prior location expectation and uninformative prior moment expectation (Kiebe
umns 2 and 3: The event-related potentials (ERP) and peri-stimulus time points (PST point)
ECD pair was fitted, where the location prior expectation was set to the MNI coordinates of
posterior means of the location and moments (normalized). For the MC source, a single ECD
MC source is based solely on the VB-ECD solution.
modulated posterior distribution on the n-th trial/prior distribution
on the (n+1)-th trial given by

p μjmwn
; lwn

� �
¼

Γ mwn
þ lwn

� �

Γ mwn

� �
Γ lwn

� � μmwn 1−μð Þlwn : ð5Þ

With respect to the Bayesian brain hypothesis, the product of the
sensory data likelihood (1) and prior distribution (5) form the inter-
nal generative model over the external cause μ at the (n+1)-th trial,
the formation of the posterior distribution (5) corresponds to percep-
tion on the n-th trial, and the iterative exchange of prior and posterior
distributions based on weighted stimulus counts corresponds to per-
ceptual learning with forgetting.

Finally, the model quantifies its degree of perceptual learning on
the n-th trial as Bayesian surprise, i.e. the Kullback–Leibler divergence
ment prior exp. Location posterior exp. Moment posterior exp.

0 0 42 −31 58 −0.0037 0.5743 0.8186
informative)

0 0 62 −34 12 −0.8890 0.4335 0.1766
informative)

0 0 −62 −34 12 0.8279 0.5174 0.2162
informative)

0 0 41 23 7 0.0832 0.0184 0.9964
informative)

0 0 −41 23 7 0.0886 0.0184 0.9959
informative)

0 0 −1 −21 36 0.0253 0.3975 0.9172
informative)

), the normalized ECD moments were obtained by using SPM8's VB-ECD method with
l et al., 2008b). Column 1: Sources of interest with medial cingulate cortex (MC). Col-
analyzed for each source. For the bilateral S2 and the IFG sources, a coupled symmetric
the right hemisphere sources and their homologue coordinates. Columns 6 and 7: The
model with uninformative location and moment prior was used, i.e. the location of the
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between the prior and posterior distribution over μ at trial n (Baldi
and Itti, 2010; Cover and Thomas, 1991; Itti and Baldi, 2009).

BayesianSurprise :¼ KL p μjmwn−1
; lwn−1

� �
‖p μjmwn

; lwn

� �� �

¼ ∫ p μjmwn−1
; lwn−1

� �
ln

p μjmwn−1
; lwn−1

� �

p μjmwn
; lwn

� �
0
@

1
Adμ

ð6Þ

Due to the use of conjugate priors, the Kullback–Leibler diver-
gence can be evaluated analytically as a function of the parameters
mwn− 1

, lwn− 1
and mwn

, lwn
which significantly simplifies the integration

over μ (Penny, 2001).
We used this approach to generate subject- and session-specific

trial-by-trial Bayesian surprise sequences using the output of Eq. (6)
for each single trial. These sequences were used as regressor/predic-
tor variables in the trial-by-trial EEG data analysis, see next section.
To implement varying degrees of forgetting, we varied the time-
window of temporal stimulus integration from long to short,
(Eqs. (3) and (4)), yielding a set of five Bayesian surprise models
with different time constants τ, abbreviated BS0, BS1, BS2, BS3 and
BS4, where we chose τ0 ¼ ∞; τ1 ¼ 8; τ2 ¼ 4; τ3 ¼ 2:�6 and τ4=2. This
choice of time constants was motivated by sampling a wide range of
possible temporal integration windows, while simultaneously maxi-
mizing the differences between the resulting regressors. Note that
larger time-constants τ correspond to longer time windows. We
show an example for one of the Bayesian surprise regressors
(τ2=4) in Fig. 2. In Table 3, we translate the five time-constants to
the weighting of the trial history.

Additionally, we generated three control regression models that
implement less complex but widely used conventional hypotheses
about the functional origin of trial-by-trial source amplitude varia-
tions: 1) a regressor indexing deviant stimuli with 1's and standard
stimuli with 0's (‘stimulus change model’, model SC), 2) a parametric
model implementing a linear relationship between the expression of
the evoked source activity and the number of standards preceding a
deviant stimulus (‘linearly modulated stimulus change model’,
model LIN), and 3) a constant null regressor comprising a vector of
1's (model M0). Model M0 was used as a baseline model to compare
all other models against. Importantly, note that model SC is the stan-
dard model for the analysis of (auditory) mismatch negativity studies.
For the roving paradigm, model LIN has also been used in modified
form in Baldeweg et al. (2004).

Functional model evaluation using parametric empirical Bayes

Each of the functional models provides a single, stimulus
sequence-specific regressor. We used a parametric empirical Bayes
(PEB) approach as implemented in SPM8's spm_PEB.m function
(Friston et al., 2002a, 2002b, 2007) to fit the models and to compute
the corresponding Bayesian model evidences for subsequent model
selection (Gelman et al., 1995; Penny, 2012). The Bayesian model
evidence framework enables the formal statistical comparison of
computational models by accounting for the accuracy-complexity
trade-off in explaining experimental data and constitutes a well‐
established approach in statistics (Hoeting et al., 1999), computation-
al psychology (Pitt and Myung, 2002), and neuroimaging (Woolrich,
in press).

To this end, the single subject, single session, single peri-stimulus
time bin data for n∈N trials was modeled according to the two-level
linear model

p �y λj Þ ¼ N �y; �X�θ; C λð Þ þ Cθ
� �� ð7Þ

i.e., the probability distribution of the augmented data �y∈Rnþ2 was as-
sumed to be multivariate normal with expectation μ ¼ �X�θ∈Rnþ2 and
parameterized covariance Σ ¼ C λð Þþð CθÞ∈Rnþ2�nþ2
; C λð Þ þ Cθð Þ≻0,

where λ∈R2 refers to the covariance constraint weighting coefficients,
the free parameters of the hierarchical linear model. Following the no-
tation in Friston et al. (2002a, 2002b, 2007), the augmented data is
given by

�y ¼
y
0
0

0
@

1
A∈Rnþ2 ð8Þ

where y∈Rn refers to the single subject, single session (comprising
n∈N trials), single peri-stimulus time bin data, which, following stan-
dard approaches to multiple linear regression, was normalized to a
mean of zero and a variance of 1 (z-score normalization). The two ad-
ditional zeros encode the expectation of the second level error and the
prior of the second level parameters. The augmented design matrix is
given by

�X ¼ X 1ð Þ X 1ð ÞX 2ð Þ

I2

� �
∈Rn�2 ð9Þ

where X 1ð Þ∈Rn�1 denotes the BS0–BS4/SC/LIN/M0-model specific re-
gressor normalized to a mean of zero and a l2-norm of 1 (except for
the regressor of model M0, which was not normalized), X 2ð Þ ¼ 0∈R is
the second level design matrix allowing single level Bayesian inference
with priors on the parameters, and I2∈R2�2 is the identity matrix.

Further,

�θ ¼ ε 2ð Þ

θ 2ð Þ

� �
∈R2 ð10Þ

is a vector of latent variables corresponding to the second level error
and linear parameter obtained by substitution of the hierarchical
form of the model

y ¼ X 1ð Þθ 1ð Þ þ ε 1ð Þ ð11Þ

θ 1ð Þ ¼ X 2ð Þθ 2ð Þ þ ε 2ð Þ
: ð12Þ

The parameterized covariance of the model C(λ) is given by

C λð Þ ¼ ∑2
i¼1λiQ i ð13Þ

where

Q1 ¼ In 0
0 02

� �
∈Rnþ2�nþ2 ð14Þ

with the identity matrix In∈Rn�n and the zero matrix 02∈R2�2 em-
beds the independence assumption over trials (justified by the sepa-
ration of neighboring trials by 650 ms) and

Q2 ¼
0nn 0 0
0 1 0
0 0 0

0
@

1
A∈Rnþ2�nþ2 ð15Þ

with the zero matrix 0n∈Rn�n embeds the second level covariance
constraint. Finally, an uninformative prior for the second level param-
eters was specified by setting

Cθ ¼ 0nþ1 0
0 exp 32ð Þ

� �
∈Rnþ2�nþ2

: ð16Þ

Upon specification of the hierarchical linear model for each single-
trial regressor, the model parameters λ∈R2 were estimated using an
EM algorithm for maximum likelihood estimation and the model log-
evidence was approximated using the variational free energy (Friston
et al., 2007; Garrido et al., 2007, 2009a). For single subjects, the model



Fig. 2. Computational model. A) Typical stimulus sequence of 60 stimuli alternating between two stimulus amplitudes A0=0 and A1=1. B) Stimulus-specific weights implemented
a forgetting kinetic with a time constant τ=4 for the 60th stimulus. C) Increase of the beta distribution parameters mn and ln over trials, implementing Bayesian learning up to
stimulus 60 for no trial weighting. D) Result of applying the weighting function of B) to the temporal evolution of mn and ln, resulting in the weighted parameters mwn

and lwn
.

E) Illustration of the Bayesian surprise regressor without forgetting or infinite time of integration constant τ=0 for the stimulus sequence depicted in A). The predicted surprise
for this stimulus sequence is large at the beginning and for the first switch of stimulus amplitudes, but close to zero for the remaining amplitude switches. F) Bayesian surprise
predictor obtained for the stimulus sequence depicted in A), but under application of the forgetting kinetic shown in B). Note that the amount of Bayesian surprise decreases
with the number of stimuli in an identical train of stimuli and increases with the number of preceding stimuli of the opposite amplitude. G) Prior and posterior probability density
functions over the parameter μ for the 60th trial of the stimulus sequence shown in A) without forgetting. H) Prior and posterior probability density functions over the parameter μ
for the 60th trial of the stimulus sequence shown in A) under the forgetting kinetic depicted in B).
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log-evidences across experimental runs were averaged to obtain an
estimate of the subject-specific model log-evidence for each model.
Following Garrido et al. (2007, 2009a), the single-subject model log-
evidences were summed over subjects to yield the group log-
evidence for each model, as a function of dipole and peri-stimulus
time-bin. Additionally, for a subset of time windows, the group log-
evidences were averaged over time and the pairwise differences
Table 3
Interpretation of the Bayesian surprise model time constants τ0 to τ4.

BS model τ 63% (s/stim) 99% (s/stim)

BS0 ∞ ∞ ∞
BS1 8 5.2/8 26.0/40
BS2 4 2.6/4 13.0/20
BS3 2.6 1.7/6 8.6/13.3
BS4 2 1.3/2 6.5/10

Column 1: The five Bayesian surprise models BS0–BS4 were derived from the same set
of governing Eqs. (1)–(6), but with varying values of the time constant τ in Eqs. (3) and
(4) listed in Column 2. Columns 3 and 4 list the time in seconds and the number of
stimuli (ISI 650 ms) corresponding to a 63% and 99% down-weighting of past observa-
tions for each of the models/time constants.
(i.e. log Bayes factors) between models were plotted. The ensuing dif-
ference maps are thresholded at a group log-evidence difference of 3,
indicating strong evidence of a particular model, compared to another
model (Penny et al., 2004).

Results

Event-related potentials

Grandmean event-related potentials and electrode space results for
the somatosensory mismatch response are shown in Fig. 3. Inspection
of the grand mean SEP at the channel level, obtained by averaging
over all experimental trials, confirmed the presence of well-
established SEP components (N20, N45/P60, N140, Fig. 3A). Fig. 3B de-
picts the ‘Deviant–Standard’ difference waveform, i.e. the difference
between averages evoked by deviant and their immediately preceding
standard stimuli (averaged over both stimulus intensities). Fig. 3C de-
picts the grand mean SEP and the ‘Deviant–Standard’ waveforms aver-
aged over electrodes over contralateral (C4, C6, CP4, CP5) and
ipsilateral (C3, C5, CP3, CP5) somatosensory cortices, showing the
expected pattern of stronger contralateral responses. Across all
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electrodes (Fig. 3B), early sMMR effects were observed around 40 and
85 ms post-stimulus, whereas more pronounced effects were observed
at 140, 200, and 350 ms post-stimulus. The corresponding topogra-
phies of these differences across electrodes are shown in the upper
row of Fig. 3D. The two early effects display fronto-central and
parieto-central negativities. The sMMR at 140 ms exhibits a bilateral
centro-parietal topography with a stronger contralateral negativity,
the sMMR at 200 ms a fronto-contralateral negativity and the sMMR
at 350 ms a fronto-central positivity. To establish the reliability of
these effects across subjects, we performed paired two-sample t-tests
between ‘Deviant’ and ‘Standard’ responses in the time windows indi-
cated by the gray bars in Fig. 3B. For the electrodes exhibiting the most
pronounced effects as shown in the lower row of Fig. 3D, these differ-
ences were significant (pFWEb0.05, Bonferroni corrected for the num-
ber of electrodes) for the effects observed at 40, 140, and 350 ms
post-stimulus (Table 4). The T-value plots across post-stimulus time
(Fig. 3D, middle row) indicate a relatively low between-subject var-
iability in the expression of the observed effects. In summary, a reliable
sMMR was recorded using the current experimental paradigm.

Distributed source localization and ECD orientation fitting

Figs. 4A–C summarizes the statistical analysis of the distributed
source reconstruction results and Fig. 4D shows the set of oriented
Fig. 3. Event related potentials. A) Grand mean SEP across all stimuli and subjects, for all ele
‘Deviant–Standard’ difference waveform, for all electrodes. The largest differences between
post-stimulus, while smaller differences are found around 40 and 85 ms post-stimulus. In co
the difference around 350 ms reflects the P300. C) Grand mean SEP (upper row) and grand
C6, CP4, CP6, left panels) and ipsilateral (C3, C5, CP3, CP5, right panels) electrodes above som
waveform for all electrodes at the time points indicated by the gray bars in panel B. Middle r
trodes which express the largest ‘Deviant–Standard’ difference effects for time points 40, 85
and ‘Standard’ (blue) conditions are shown for the selected electrodes.
ECD sources used as basis for the trial-by-trial analyses (cf. Tables 1
and 2 for details).

To localize sources, we selected time windows of interest based on
the peak times of the most prominent deflections in both the ‘SEP’
and the ‘Deviant–Standard’ difference response (Figs. 3A, B). To local-
ize S1, the SEP was reconstructed in a time-window of 18–25 ms (i.e.
around the N20 effect, Fig. 3A) after stimulus onset, resulting in the
expected activation pattern of contralateral S1 (Fig. 4A, Table 1). Like-
wise, reconstruction of the SEP in a time-window of 130–160 ms (i.e.,
around the N140 effect, Fig. 3A) after stimulus onset resulted in bilat-
eral activation of posterior S2 (Fig. 4B, Table 1). Right inferior frontal
gyrus activity is typically implicated in the response to the deviant
and was therefore located by reconstructing the ‘Deviant’ response
in a time window 340–360 ms (as identified from the difference re-
sponse, Fig. 3B) after stimulus onset (Fig. 4C, Table 1). In accordance
with previous studies on the aMMN this source was mirrored for
the left hemisphere to derive a symmetric frontal source pair (Rinne
et al., 2000, 2005). The distributed source localization analysis did
not reveal a significant activation of cingulate cortex for the ‘Deviant’
condition. Hence, the VB-ECD method with uninformative prior loca-
tion was used to spatially localize this source at the time point of
maximal expression identified from the ‘Deviant–Standard’ difference
response, i.e., at 351 ms, Fig. 3B. The deficiency of the distributed
source localization analysis to detect activation of cingulate cortex
ctrodes. The classical SEP peaks (N20, N45/P60 and N140) are labeled. B) Grand mean
deviant and standard SEPs are observed in time windows around 140, 200 and 350 ms
njunction, the difference waveforms up to 200 ms are here referred to as sMMR, while
mean ‘Deviant’ and ‘Standard’ waveforms (lower row) averaged over contralateral (C4,
atosensory cortices. D) Upper row: topographies for the ‘Deviant–Standard’ difference

ow: post-stimulus T-values across time for the contrast ‘Deviant–Standard’ for the elec-
, 140, 200, and 350 ms. Lower row: the peri-stimulus waveforms for the ‘Deviant’ (red)
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may be most likely due to the known bias of source imaging methods
to superficial sources (Fuchs et al., 1999; Michel et al., 2004) which is
alleviated, but not abolished, by the multiple sparse prior approach
used in the current study (Friston et al., 2008). As discussed above,
previous findings in the literature as well as the observed potential
topography for deviant responses in the current study speak for the
inclusion of a cingulate source in the ECD model. As a caveat, based
on the approach taken here, we cannot rule out the possibility that
activity in cortical areas other than cingulate cortex is captured by
the mediate cingulate source. Hence, the topographical interpretation
of our modeling results for this source exhibits some uncertainty. On
the other hand, the interpretation of the temporal–functional speci-
ficity of the modeling results for this source is unaffected by any spa-
tial misattribution of scalp EEG activity.

After MNI coordinates were derived for each of the sources, the
VB-ECD method with informative location priors was used to deter-
mine the normalized moments for ECDs located at the respective
MNI coordinates as documented in Table 2.

Plausibility of the anatomical source model

To investigate whether the data reduction furnished by projecting
the electrode space data onto the six ECDs of fixed orientation is sen-
sible, the activity time-courses of the six ECDs were computed for the
grandmean SEP (Fig. 5A). This plot indicates a neurobiologically plau-
sible spatiotemporal activity pattern: The S1 dipole captures most of
the early N20 activity, while for the N140 activity the S2 and IFG
sources contribute most. Late components >200 ms post-stimulus
are captured by a mixture of sources, but in particular by the MC
source.

To investigate to which degree the data reduction onto a limited
set of basis vectors was able to capture the grand mean SEP activity,
the channel percent variance explained (PVE) was computed over
time (Fig. 5B). Performing the analysis for hierarchical subversions
of the six dipole model comprising 1) only S1, 2) S1 and bilateral
S2, 3) S1, bilateral S2, bilateral IFG and 4) the complete six ECD
model revealed that the PVE over time was largest for the complete
model, in particular between 120 and 300 ms.

In summary, based on both the results of previous studies and the
present analysis, we concluded that the six ECDmodel forms an appro-
priate anatomical basis for the evaluation of trial-by-trial EEG data.

Model-based trial-by-trial analyses

Having established a reliable recording of the sMMR in electrode
space and a plausible anatomical source reconstruction, we studied
the functional specialization of each of the six sources. To this end,
the peri-stimulus trial-by-trial electrode data were projected onto
the identified set of ECDs, each peri-stimulus time-point's trial-by-
trial ECD activity was modeled using seven different functional
Table 4
Statistical evaluation of the evoked ‘Deviant–Standard’ difference waveform.

Electrode label Time window T‐value (df) p-value

FCz 29–44 ms T(14)=−3.96 p=0.001 (sig.)
C4 78–93 ms T(14)=−2.86 p=0.012 (n.s.)
C6 129–145 ms T(14)=−4.33 p=0.001 (sig.)
F4 209–225 ms T(14)=−2.36 p=0.033 (n.s.)
FCz 344–359 ms T(14)=5.55 pb0.001 (sig.)

Table 4 reports the results of a series of paired two-sample t-tests for statistical signif-
icance of the difference between ‘Deviant’ and ‘Standard’ waveforms in the time-
windows expressing the most pronounced potentials across subjects (see Fig. 3B). Col-
umns 1 and 2: For each time-window, the average potential at the electrode expressing
the maximum potential at the group level was computed for each subject and condi-
tion (standard/deviant) and subjected to a paired two-sample t-test. Columns 3 and
4: Statistical significance (sig.) was established using Bonferroni correction for multiple
testing over electrodes at a level of pFWEb0.05.
models (BS0-BS4, SC and LIN), and for each model, the group model
log-evidence was determined using parametric empirical Bayes.

In Fig. 6A, each ECD-specific panel depicts the group model log-
evidences for the seven models, relative to the constant model M0,
over peri-stimulus time. As indicated by the prominent peaks in the
log model-evidence maps in three post-stimulus time-windows
(around 140, 250, and 360 ms, dotted rectangles) for three different
anatomical source ECDs (rS2, rIFG, and MC), Bayesian surprise
encoding exhibits a high degree of anatomical–temporal specificity.
In the following, we provide a detailed account of this key result by
considering the model comparisons for each time-window and ECD
source in turn.

In the time window around 140 ms post-stimulus, single-trial var-
iability of contra-lateral secondary somatosensory cortex is best
explained by Bayesian surprise models with forgetting (Fig. 6A, rS2,
models BS1–BS4). Pair-wise comparison of the time-averaged model
log-evidences (Fig. 6B, rS2, 109–171 ms) shows that for this ECD
source and time-window, these models explain the data better than
the Bayesian surprise model without forgetting (BS0) and both con-
ventional models (stimulus change/linearly modulated stimulus
change, SC and LIN, respectively). Next, in the time window around
250 ms post-stimulus, the highest model log-evidences are observed
for right inferior frontal cortex (Fig. 6A, rIFG). Here, the Bayesian sur-
prise models with forgetting (BS2–BS4) and the conventional stimu-
lus change (SC) model explain the data best. Specifically, the SC
model performs better than all models except the BS4 model for the
time-integrated model log-evidence (Fig. 6B, rIFG, 210–291 ms) and
at 254 ms supervenes the BS4 model in its ability to explain the
data (model log-evidence difference SC−BS4: 3.5). Finally, in a
time window around 360 ms post-stimulus, the largest model log-
evidences are observed for mediate cingulate cortex (Fig. 6A, MC).
Here, Bayesian surprise models with forgetting (BS2–BS4) perform
best over an extended period of time, with model BS4 explaining
the observed data better than all other models except BS3 (Fig. 6B,
panel MC, 310–416 ms). In contrast to the results for secondary so-
matosensory cortex at 140 ms, the superiority of the Bayesian sur-
prise models over the stimulus change model is less pronounced
(model log-evidence difference for rS2 at 140 ms BS4−SC: 15.5 vs.
model log-difference for MC at 365 ms BS4−SC: 6.9).

Besides these main log-evidence peaks for the rS2, IFG and MC
sources, Fig. 6B indicates that also for sources S1 and lS2, the Bayesian
surprise models provide better accounts of the data than the conven-
tional/BS0 models during early processing (Fig. 6B, 109–171 ms). For
intermediate processing (210–291 ms), for S1 only, the Bayesian sur-
prise models BS3/BS4 are better than the conventional/BS0 models.
The log-evidence map for the lIFG source shows only a limited degree
of temporal variation and no clear superiority for any of the models.
Finally, over all sources and time-windows, model BS0 finds the
least support by the data.

Discussion

In the current study we have shown that EEG markers of central
somatosensory processing exhibit dynamics that are consistent with
the Bayesian brain hypothesis of perceptual learning. Using a
model-based approach for the analysis of trial-by-trial EEG source ac-
tivity, we were able to demonstrate spatiotemporal specific encoding
of Bayesian surprise as expressed by the present sequence processing
models (Eqs. (1) to (6)). Moreover, we could show that the resulting
models are, for some critical processing stages, better in explaining
cortical source activity than conventional models that are typically
used to analyze mismatch negativity studies.

Specifically, we find that a lower level source (rS2), at an early pro-
cessing stage (140 ms), is more prominently involved in the represen-
tation of Bayesian surprise than in the representation of modulated
stimulus change as assessed by conventional models. Critically, in the



Fig. 4. Distributed source reconstruction and ECD fitting results. A–C) Statistical group distributed source reconstruction results for time-windows of 18–25 ms, 130–150 post-
stimulus of the ‘SEP’ (A and B) and 340–360 ms post-stimulus of the ‘Deviant’ ERP. The p-value maps displayed were thresholded at pb0.001 (uncorrected) and overlaid onto
SPM8's standard single subject brain. D) The complete six source ECD model with normalized moments obtained by VB-ECD overlaid on the standard MNI cortical mesh provided
by SPM8 (S1: right primary sensory cortex, rS2: right secondary somatosensory cortex, lS2: left secondary somatosensory cortex, rIFG: right inferior frontal gyrus, lIFG left inferior
frontal gyrus, MC: medial cingulate cortex).
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present study, Bayesian surprise acts as a marker of perceptual learning
by signaling the adjustment of the brain's internal generative model.
Our finding is hence in line with previous imaging and electrophysio-
logical studies that implicate secondary somatosensory cortex in fast
perceptual learning (Pleger et al., 2003; Romo et al., 2003). In contrast,
for a subsequent stimulus processing stage around 250 ms, a high level
frontal source (rIFG) is more strongly involved in the representation of
stimulus change as compared to Bayesian surprise. This finding is in ac-
cordance with the “salience network”- theory, which implicates higher
level frontal/insular cortex in the bottom-up detection of salient events
and switching between other large-scale networks to facilitate access to
attention and working memory resources (Menon and Uddin, 2010;
Vinod, 2011). Finally, themodel analyses indicate additional perceptual
learning attributable to the cingulate cortex (MC) at a later processing
step (around 360 ms). This result lends support to recent suggestions
that perceptual learning manifests itself at several temporal stages of
the EEG response (Hamamé et al., 2011; Song et al., 2005), where
later stages are thought to predominantly reflect learning-induced
modulations of attention (Gilbert et al., 2001). The reduced superiority
of Bayesian surprise over stimulus change for this late processing step
might thus be indicative of an interaction between perceptual learning
and saliency detection. Taken together, the present study provides
novel evidence for spatiotemporal/functional segregation in human
somatosensory processing. More specifically, early-processing/low-
level-cortical stages (S1, contralateral S2) may implement passive
short-term Bayesian perceptual learning, downstream intermediate-
processing/high-level-cortical stages (rIFG) index active stimulus en-
gagement, and late-processing/high-level-cortical stages (MC) may re-
flect learning-induced updating of top-down attentional control
mechanisms. Importantly, without computational modeling of single
trial EEG data at the source level, wewould not have found the evidence
for these anatomic-temporal functional differences in the somatosenso-
ry system.

In contrast to standard Bayesian online-learning schemes (Bishop,
2007), the present study shows that the cortical learning signal is not
likely to arise from a Bayesian learner that incorporates all previously
observed stimuli of an experimental session with equal weight
(model BS0). Rather, we find strong evidence for temporally-
adaptive Bayesian learners (BS1–BS4) that give higher weight to tem-
porally close, rather than distant, observations. Specifically, as im-
plied by the generally low explanatory power of model BS0 and by
the lower explanatory power of models BS1/BS2 compared to models
BS3/BS4 (for a number of ECDs and time windows, see Fig. 6A), the
time window of stimulus integration in the current experimental par-
adigm is probably shorter than 30 s and closer to the 5–10 s range. As
shown in the fourth column of Table 3, models BS3 and BS4 exhibit
almost complete suppression of stimuli more than 8.6 s and 6.5 s in
the past, respectively. A comparison with the timing parameters of
the experimental paradigm (inter-stimulus interval 0.65 s, average
length of identical stimulation ~5 s, maximal length of identical stim-
ulation ~10 s) suggests that the somatosensory system may use an
optimized integration window for the average temporal statistics of
the stimulation sequence.

A number of studies have previously addressed the encoding of
surprise in the auditory and visual domain using model-based trial-
by-trial analyses of evoked EEG and fMRI data (Harrison et al., 2006,
2011; Mars et al., 2008; Strange et al., 2005). Besides providing an ex-
tension to the somatosensory domain, the present study makes the
following novel contributions: first, the only previous EEG study
that used a trial-by-trial model-based analysis of surprise encoding
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Fig. 5. Plausibility of the six source ECD model. A) ECD activity waveforms obtained by projecting the grand mean SEP onto the oriented ECDs. B) The channel percent variance
explained (PVE) for the complete six ECD model (S1+S2+IFG+MC) and three hierarchical subversions of this model comprising only the S1 ECD (S1), the S1 and bilateral S2
ECDs (S1+S2), and the S1, bilateral S2, and bilateral IFG ECDs (S1+S2+IFG+MC).
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similar to the one employed here focused on a single spatiotemporal
feature, namely the P300 amplitude at electrode Pz (Mars et al.,
2008). The present study goes beyond this approach by explicitly an-
alyzing all peri-stimulus time bin features of cortical source activity,
thereby allowing for a comprehensive analysis of the spatiotemporal
activity in brain space. Second, with respect to the model-based re-
gressors, most previous studies used the negative log of the current
stimulus probability estimates as measure of surprise (Harrison et
al., 2006; Mars et al., 2008; Strange et al., 2005). While we are not
claiming that Bayesian surprise is necessarily a better measure of sur-
prise in perceptual learning schemes, it has the benefit of rep-
resenting the degree to which the internal model is updated on a
given trial, rather than the improbability of a stimulus under the
Fig. 6. Computational modeling results. A) Relative group model log evidences for all ECD so
rS2: right secondary somatosensory cortex, lS2: left secondary somatosensory cortex, rIFG: r
Each row within each ECD panel depicts the model log-evidence over peri-stimulus time fo
models with different time constants for the exponential forgetting constant, see Table 3.
windows of interest further evaluated in panel B. B) Pair-wise model log evidence co
310–416 ms). The squares of each panel color code the difference in model log evidence b
the color in the square at location (B1, SC) denotes the group model log evidence ln y B1j Þð
current state of the model. This has the advantage that it reflects
updating of the internal model over all possible states of external cau-
ses, rather than being conditioned on the point estimate of a single
cause. In this sense, Bayesian surprise allows the observer to econom-
ically evaluate a broad range of possible external scenarios weighted
by their inferred uncertainty, rather than relying on a possibly
unreliable point estimate of the external cause for future predictions.
Third, most previous studies (with the notable exception of Harrison
et al., 2011) did not explicitly address the question of the temporal
scale of stimulus integration, as provided by the exponential forget-
ting kinetic used here. We found clear evidence that somatosensory
processing represents the stimulus sequence at a specific time-scale
which may be related to the temporal statistics of the input
urces and peri-stimulus time (PST) −100 to 600 ms (S1: right primary sensory cortex,
ight inferior frontal gyrus, lIFG: left inferior frontal gyrus, MC: medial cingulate cortex).
r a specific model relative to the constant null model M0 (BS0–BS4: Bayesian surprise
SC: stimulus change model, LIN: linear model). The dotted rectangles indicate time-
mparisons for the three time-windows identified in A (109–171 ms, 210–291 ms,
etween the model indicated as row and the model indicated as column. For example,
− ln y SCj Þð .
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sequences. Fourth, and probably most importantly, mismatch re-
sponses in EEG have traditionally been assumed to be elicited by
stimulus change (Näätänen et al., 2011), whereas more recent ac-
counts have explicitly addressed the theoretical notion that mismatch
responses may be evidence of internal model adjustments in re-
sponse to unexpected input (Garrido et al., 2009a; Winkler et al.,
2009). The computational modeling approach employed here enables
us to formally define and statistically test this notion using single trial
EEG data.

We conclude the discussion with some considerations of the
methodological approach employed: First, the current model-based
trial-by-trial EEG analyses are conditioned on the selection of the an-
atomical location and orientation parameters of the ECDs used for
data set projection. While this technique allows us to selectively
monitor ‘virtual’ neural activity in specified brain areas, the data re-
duction entailed by this procedure might provide different results
when using a different source model. Although we have taken great
care to appropriately motivate the selection of sources based on
both previous literature as well as on source reconstruction results
of the present data set, we cannot rule out that there is some other
source model that is more plausible than the one employed. Second,
the underlying assumption of the present Bayesian surprise model
is that the generative model used by the brain samples each stimulus
identically and independently. This assumption enabled us to employ
a simple update rule and is reasonably plausible given that we explic-
itly model sequences of stimuli. Third, fitting separate predictor func-
tions derived from the Bayesian surprise model with different time
constants τ of ‘forgetting’ allowed us to obtain a rough estimate of
the optimal forgetting constant for a given ECD and time-window.
This approach may be replaced by treating the time constant τ as a
free parameter of a nonlinear optimization problem. In such a frame-
work, it would be possible to evaluate a continuous parameter space,
possibly in a Bayesian fashion, and to directly obtain source-specific
estimates of the temporal dynamics of perceptual learning.

Conclusion

In summary, our current study indicates that the dynamics of single-
trial somatosensory EEG responses can be explained by a formal model
of Bayesian perceptual learning. Specifically, we have shown that in a
somatosensory mismatch paradigm Bayesian surprise signals are
encoded by multiple cortical regions of the somatosensory network in
a temporally specific manner and found that Bayesian surprise signals
can provide a better explanation for source-reconstructed single-trial
EEG signals than conventional models typically employed for mismatch
negativity studies.
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