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ARTICLE INFO ABSTRACT

Keywords: Multivariate pattern analysis (MVPA) methods such as decoding and representational similarity analysis (RSA) are
MEG growing rapidly in popularity for the analysis of magnetoencephalography (MEG) data. However, little is known
EEG about the relative performance and characteristics of the specific dissimilarity measures used to describe differ-
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ences between evoked activation patterns. Here we used a multisession MEG data set to qualitatively characterize
a range of dissimilarity measures and to quantitatively compare them with respect to decoding accuracy (for
decoding) and between-session reliability of representational dissimilarity matrices (for RSA). We tested
dissimilarity measures from a range of classifiers (Linear Discriminant Analysis — LDA, Support Vector Machine —
SVM, Weighted Robust Distance — WeiRD, Gaussian Naive Bayes — GNB) and distances (Euclidean distance,
Pearson correlation). In addition, we evaluated three key processing choices: 1) preprocessing (noise normal-
isation, removal of the pattern mean), 2) weighting decoding accuracies by decision values, and 3) computing
distances in three different partitioning schemes (non-cross-validated, cross-validated, within-class-corrected).
Four main conclusions emerged from our results. First, appropriate multivariate noise normalization substantially
improved decoding accuracies and the reliability of dissimilarity measures. Second, LDA, SVM and WeiRD yielded
high peak decoding accuracies and nearly identical time courses. Third, while using decoding accuracies for RSA
was markedly less reliable than continuous distances, this disadvantage was ameliorated by decision-value-
weighting of decoding accuracies. Fourth, the cross-validated Euclidean distance provided unbiased distance
estimates and highly replicable representational dissimilarity matrices. Overall, we strongly advise the use of
multivariate noise normalisation as a general preprocessing step, recommend LDA, SVM and WeiRD as classifiers
for decoding and highlight the cross-validated Euclidean distance as a reliable and unbiased default choice for
RSA.

Introduction analysis (RSA) (Diedrichsen and Kriegeskorte, 2017; Kriegeskorte, 2009;

Kriegeskorte et al., 2008a, 2008b; Kriegeskorte and Kievit, 2013). RSA

The investigation of the rapid neural dynamics underlying cognitive
functions requires a combination of high-temporal resolution neural
measurements with analytical methods that systematically and effi-
ciently probe the information encoded in measured brain activity. A
promising approach is the application of multivariate pattern analysis
methods (MVPA) to magnetoencephalography (MEG), combining the
sensitivity of pattern-based methods with the high temporal resolution of
MEG. Two prominent MVPA methods are multivariate decoding (Cox
and Savoy, 2003; Haxby et al., 2001; Haynes and Rees, 2005; Kamitani
and Tong, 2005), which quantifies the discriminability of
condition-specific activation patterns, and representational similarity
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characterizes the similarity of measured responses to experimental con-
ditions in representational dissimilarity matrices (RDMs). As RDMs can
in principle be computed for any measurement modality, RSA on MEG
opens the way to quantitatively relate rapidly emerging brain dynamics
to other data, such as fMRI (Cichy et al., 2016b, 2013) in order to localize
responses; computational models (Cichy et al., 2017a, 2016a; Kietzmann
et al., 2017; Pantazis et al., 2017; Seeliger et al., 2017; Su et al., 2012;
Wardle et al., 2016) in order to understand the underlying algorithms
and representational format; to behaviour (Cichy et al., 2017b; Furl et al.,
2017; Mur et al., 2013); and across species (Cichy et al., 2014).

At the core of MVPA is the dissimilarity measure used to quantify the
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discriminability (decoding) or the dissimilarity structure (RSA) of evoked
activation patterns, fundamentally affecting both the accuracy and the
interpretability of results. Yet little is known about the performance and
characteristics of different dissimilarity measures for MEG MVPA.
Inspired by previous work comparing different dissimilarity measures for
fMRI (Walther et al., 2016), we conducted a comprehensive and sys-
tematic investigation of dissimilarity measures for MEG to close this gap.

To this end, we compared a set of dissimilarity metrics comprising
classifiers (Linear Discriminant Analysis — LDA, Support Vector Machine
- LDA, Weighted Robust Distance — WeiRD, Gaussian Naive Bayes — GNB)
and distance measures (Euclidean distance, Pearson correlation). This
comparison was done qualitatively, by characterizing dissimilarity time
courses, and quantitatively, by comparing decoding accuracies (decod-
ing) and session-to-session reliabilities of RDMs (RSA). We further
evaluated the effects of three main processing choices that affect
dissimilarity estimation: 1) preprocessing (noise normalisation, removal
of the pattern mean), 2) the use of classification decision values to pre-
serve gradual information in classification-based MVPA, and 3) data
partitioning (non-cross-validated; cross-validated; within-class-cor-
rected, i.e. subtracting within-from between-condition distances).

Our results give rise to four straightforward recommendations for
MVPA in MEG research. First, multivariate noise normalisation is
strongly recommended as a general preprocessing step when considering
a number of methodological intricacies. Second, for decoding we
recommend LDA, SVM and WeiRD, which achieved high accuracies.
Third, we show that a previously reported impairment of pattern reli-
ability for decoding accuracy (Walther et al., 2016) can be mitigated by
weighting correct and incorrect predictions with classifier decision
values. Fourth and finally, concerning distance-based dissimilarity
measures for RSA, we recommend the cross-validated Euclidean distance
as a robust, gradual, reliable and largely unbiased default choice.

Materials and methods
Data set

The present study is based on a previously published MEG data set
(Cichy et al., 2014). This data set was chosen for two reasons. First, the
data set has two experimental sessions per participants, enabling us to
compute inter-session reliabilities of our measures. Although it is
possible to split a single experimental session into subparts to compute
reliability, we reasoned that two independent sessions more realistically
probe the robustness of a measure with respect to measurement quality
(e.g., noise level of individual channels) or daily conditions of partici-
pants (e.g. wakefulness or motivation). Second, the employed stimulus
set has been used in a number of previous studies (Cichy et al., 2016b,
2014; Cichy and Pantazis, 2016; Khaligh-Razavi and Kriegeskorte, 2014;
Kiani et al., 2007; Kriegeskorte et al., 2008b; Mur et al., 2013; Walther
et al., 2016), facilitating the comparison of our results with previous
literature.

We briefly summarize the most relevant aspects of experimental
design and acquisition underlying the present data set (for a detailed
description, see Cichy et al., 2014). Participants viewed coloured images
of 92 different objects on a grey background presented at the centre of a
screen (2.9° visual angle, 500 ms duration), overlaid with a dark grey
fixation cross. For each of two MEG sessions, participants completed 10
to 15 runs of 420s duration each. Each image was presented twice in
each MEG run in random order, with a trial onset asynchrony of 1.5 or
2s. To control vigilance and eye blink behaviour, participants were
instructed to press a button and blink their eyes in response to a paper
clip that was shown randomly every 3 to 5 trials (average 4). Paper clip
trials were excluded from further analysis.

During the experiment, continuous MEG signals from 306 channels
(204 planar gradiometers, 102 magnetometers, Elekta Neuromag TRIUX,
Elekta, Stockholm) were acquired at a sampling rate of 1000 Hz. Recor-
ded MEG signals were filtered in a frequency range of 0.03-330 Hz
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(default setting of Elekta). The lower frequency serves to remove direct
current (DC) drifts and its precise value is not critical as long as it is small
enough to avoid distortions of event-related responses (see Rousselet,
2012). The higher frequency serves to prevent aliasing. To protect from
filter imperfections, the Elekta default value is set to 330 Hz, i.e. below
the theoretical Nyquist frequency of 500 Hz. As to our knowledge there
are no known informative visually evoked brain signals above the upper
limit of the gamma band, i.e. 100 Hz, the precise value of the higher
frequency is likewise not critical.

For spatiotemporal filtering we used the MaxFilter software (Elekta,
Stockholm), which has been shown to reduce noise and remove artefacts
without altering the field patterns of brain signals (Taulu et al., 2004;
Taulu and Simola, 2006). We used default parameters (harmonic
expansion origin in head frame = [0 0 40] mm; expansion limit for in-
ternal multipole base =8; expansion limit for external multipole
base = 3; bad channels automatically excluded from harmonic expan-
sions =7 s.d. above average; temporal correlation limit = 0.98; buffer
length =105s). Intuitively, a spatial filter was applied that separated
signal data from distant noise sources outside the sensor helmet. Subse-
quently, a temporal filter was applied that discarded time series com-
ponents of the signal data that were strongly correlated with noise data.

Finally, raw MEG trials were extracted with 100 ms baseline and a
1000 ms post-stimulus period (i.e., 1101 ms length), yielding 306-
dimensional pattern vectors for each time point of a trial. In addition, raw
trials were down-sampled by averaging across consecutive 10 ms bins to
decrease the computational costs and to increase the signal-to-noise
ratio.

General analysis pipeline

We first introduce the general analysis pipelines underlying the
comparison of dissimilarity measures for decoding and RSA and there-
after describe each step of the pipeline in detail. As shown in Fig. 1A, in a
first step, trials were combined to pseudo-trials to improve the overall
signal-to-noise ratio. In a second step, pseudo-trials were submitted to an
optional preprocessing stage: multivariate noise normalisation and/or
removal of the mean pattern. In a third step, the dissimilarity measures
were applied to pseudo-trials, separately for each pairwise combination
of conditions and either in a cross-validated procedure or a non-cross-
validated procedure (Fig. 1B). The first three steps were performed for
overall 20 randomized assignments of trials to pseudo-trials (permuta-
tions) and for both sessions of each participant. In a fourth and final step,
dissimilarity measures were compared. For decoding, classifiers were
compared based on average decoding accuracy (averaged across condi-
tion pairs, permutations and sessions). For RSA, dissimilarity measures
were compared by means of the session-to-session reliability of repre-
sentational dissimilarity matrices (averaged across permutations).

Pseudo-trials

To increase the signal-to-noise ratio, for each of the N¢ (=92) con-
ditions we created 5 pseudo-trials by dividing randomly ordered pre-
processed raw trials into 5 approximately equinumerous partitions and
then averaging across raw trials within partitions (Fig. 1A). To minimize
effects caused by the arbitrariness of this ordering, the procedure was
repeated for 20 random orderings of raw trials (henceforth referred to as
permutations).

Optional preprocessing of pseudo-trials

Prior to MVPA, the MEG data may undergo additional preprocessing.
Here, we assessed two popular preprocessing choices: 1) noise normal-
isation to improve the quality of the data, and 2) removal of the mean
pattern to eliminate condition-nonspecific response components.
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Fig. 1. Analysis pipeline and types of dissimilarity measures.

1) Compute pseudo-trials 2) Optional (A) The': analysis pipelinf: 'comprised t}.1e followirvlg steps: 1)
H Raw trials of each condition were assigned to five pseudo-
(Conditions] [ 1 (conditi preprocessing i ¢
% 1. Randomly assign raw on+ |t'logs trlal.s through randqm permutation al.‘ld averagejd. -2)
o0 (1) trials to five equi- © Optionally, pseudo-trials underwent noise normalisation
210 0 it 2 * Noise and/or removal of the mean pattern. 3) Dissimilarities were
‘e @ numerous partataons = ) A )
cle ® - (per condition) i IS =*| normalisation computed on pseudo-trials. Steps 1-3 were performed for 20
2@'® (R4 K . 'S *R | of permutations (i.e. assignments of trials to pseudo-trials) and
3 2. Obtain pseudo-trials by 2 emoval 0 . -, o
Se e (1] . 3 mean pattern for both sessions of each participant. 4) Dissimilarity mea-
N i @ averagingacross raw o P d b f d decodi
) trials within partitions sures were compared by means of averaged decoding accu-
L ) L P ) racies in case of decoding or session-to-session-reliabilities of

] representational dissimilarity matrices (RDMs) in case of

3) Compute dissimilarity

RSA. (B) Overview of dissimilarity types for the computation
of dissimilarity on pseudo-trials. Cross-validated measures

Compute dissimilarity for
all pairwise combinations
of conditions in a cross- or
non-cross-validated
procedure (see Figure 1B)
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4) Comparison of dissimilarity measures

Decoding: average across condition
pairs/permutations/sessions

and compare decoding accuracies
RSA: average across permutations,
construct RDMs for each session and
compare the session-to-session

are decoding accuracy, decision-value(DV)-weighted decod-
ing accuracy and cross-validated distances; non-cross-
validated measures comprise non-cross-validated and
within-class-corrected distances.
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leave two pseudo-trials out

B

Non-cross-validated
dissimilarity measures
pool all pseudo-trials

Decoding Accuracy: proportion of
correct predictions (minus chance)

DV-weighted decoding accuracy:
decision values for correct predictions -
decision values for incorrect predictions

Non-cross-validated distance:
distances between averaged patterns

Within-class-corrected distance:
within-condition distances -
between-condition distances

Cross-validated distance: validate
distances between partitions

Multivariate noise normalisation

Commonly, MEG sensors differ in noise levels. To better exploit the
information contained in multisensor MEG data, sensors with high noise
levels (i.e., unreliable sensors) should be downweighted and sensors with
low noise levels (i.e., reliable sensors) should be emphasized. This can be
achieved by univariate noise normalisation (UNN), where each channel
individually is normalised by an estimate of its error variance. In addi-
tion, it may be useful to emphasize or deemphasize specific spatial fre-
quencies of MEG patterns. This can be achieved by means of multivariate
noise normalisation (MNN), where also the error covariance between
different sensors is considered. In both procedures, the MEG patterns x
are normalised by means of a (co)variance matrix » :

(€Y

For MNN, off-diagonal elements of }_ correspond to the respective
covariances, for UNN they are set to 0.

The (co)variance matrix ) can be obtained in several different ways
characterized by data selection (i.e., baseline phase or entire epoch) and
by the level of temporal specificity (i.e., whether the covariance matrix is
computed separately for each condition or each time point). To deter-
mine the best method for our data set, in a first step we compared the
performance of different covariance estimation methods. In brief, we
computed > either on baseline data (baseline method), on the full epoch
(epoch method) or separately for each time point (time point method).
Moreover, since rank deficiency is often a problem for matrix inversion,
we additionally tested a shrinkage transformation (Ledoit and Wolf,
2004) for the covariance matrix. The supplementary section “Compari-
son of noise normalisation methods” provides a detailed motivation and
description of the methods.

Our main findings (summarized in Figure S1) were that 1) shrinkage
improved the performance of all normalisation methods, 2) MNN was

* 1
X =X
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superior to UNN for the epoch and time point method and on par for the
baseline method, and 3) the two overall best normalisation methods used
MNN based on the epoch or the time point method. Given the slightly
higher computational costs of the time point method, for the present
work we chose MNN based on the epoch method.

Removing the mean pattern (cocktail-blank removal)

One likely complication when evaluating the dissimilarity of activa-
tion patterns is that different experimental conditions often share a
common response component. This has two main reasons. First, besides
ample differences, experimental conditions may also have common
experimental aspects, such as the fact that any stimulus was presented,
leading to the activation of identical or overlapping neuronal pop-
ulations. Second, even responses from non-overlapping, but spatially
clustered, neuronal populations can produce similar activation patterns
at the coarse spatial scale of neuroimaging measurements.

To account for condition-nonspecific response components, previous
studies have subtracted the mean pattern from all conditions (“cocktail-
blank removal™) (Op de Beeck, 2010; Pietrini et al., 2004; Williams et al.,
2008, 2007). However, mean pattern removal is problematic in studies
that delineate representational structure, such as RSA, as it introduces
dependencies between conditions that may complicate the interpret-
ability of RDMs (Diedrichsen et al., 2011; Garrido et al., 2013; Walther
et al., 2016). Nevertheless, cocktail-blank removal is useful as a tool to
determine the influence of condition-non-specific response patterns on
the reliability of dissimilarity measures in case of RSA. In the present
work, we used mean pattern removal only for this aim, assessing the
effect of condition-nonspecific response patterns on the reliability of the
Pearson distance in RSA (note that Euclidean distances are unaffected by
condition-nonspecific patterns). In detail, we computed the mean sensor
pattern across conditions and subtracted it from each sample.
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Data partitioning and cross-validation

Dissimilarity measurements between the pseudo trials of different
condition was different depending on whether the employed dissimi-
larity measure was cross-validated or not. For cross-validated measures
(i.e., classification, cross-validated distances), the distance of two
compared conditions was computed in a stratified cross-validation pro-
cedure with one pseudo-trial of each condition in the test set. We kept a
pseudo-trial of both respective conditions in the test set in order to enable
the computation of test set distances between conditions (see the section
on cross-validated distances below). Thus, in each permutation, all but
one randomly chosen pseudo-trial of each of any two compared condi-
tions were used for training (hereafter referred to as data partition A) and
the two left-out pseudo-trials were used for validation (data partition B).
Note that in this scheme permutations correspond to shuffled cross-
validation folds. For non-cross-validated dissimilarity measures (i.e.,
non-cross-validated distances, within-class-corrected distances), all
pseudo-trials of two compared conditions were pooled and the dissimi-
larity measure was computed once. More specifically, in the case of non-
cross-validated distances, data were averaged across pseudo-trials of
each condition and distances were computed on these averages. By
contrast, because within-class-corrected distances required computing
distances between the individual pseudo-trials within a condition, no
averaging across pseudo-trials was performed.

Types of dissimilarity measures

In this section, we introduce the dissimilarity measures compared in
this work, which we divide into four different groups: 1) classification, 2)
non-cross-validated, 3) cross-validated and 4) within-class-corrected
distances.

In the following, vectors x and y represent the measured MEG pat-
terns associated with two experimental conditions. Each pattern vector
has length Ng corresponding to the number of sensors of the MEG device
and is computed as the average vector for a considered condition and
partition of the data. The goal is to compute a distance d(x, y) between
each pairwise combination of overall N¢ conditions.

Decoding accuracy

In classification, an algorithm is trained to discriminate between a set
of conditions on the basis of labelled training samples. Here, we used
binary classification, where a classifier is applied to each possible pair-
wise combination of the N conditions. Note that decoding accuracies as
reported here were always cross-validated, as in each fold classifiers were
trained on one partition of the data set (partition A) and tested on the left-
out partition (partition B).

We assessed three common classifiers: Linear Discriminant Analysis
classifier (LDA), linear Support Vector Machine (SVM) and Gaussian
Naive Bayes (GNB). We used the implementations provided by Scikit-
learn (Abraham et al., 2014) with default parameters (in particular a
cost parameter of 1 for SVM and the LIBSVM backend; Chang and Lin,
2011). Exploratory analyses, in which parameters were optimized in a
nested cross-validation procedure, did not yield significant benefits and
were thus discarded. Note that for LDA, multivariate noise normalisation
is originally an integral part of the algorithm itself. In order not to
interfere with noise normalisation during preprocessing, the covariance
matrix in the LDA algorithm was set to the identity matrix (equivalent to
a Euclidean distance-to-centroid classifier). In addition, we included the
recently proposed Weighted Robust Distance (WeiRD; Guggenmos et al.,
2016; https://github.com/m-guggenmos/weird) as a fourth classifier.
WeiRD is a distance-to-centroid classifier, where Manhattan distances are
computed in a statistically weighted feature space. A more detailed
description is provided in the supplementary section “Weighted robust
distance”.

The dissimilarity measure based on classification was decoding accu-
racy and was defined as follows:
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Np

1
duccurucy = N73 Z 6@,}pb —-0.5

b=1

(2)

where Np is the number of samples in data partition B, & the Kronecker
delta, the condition predicted by the classifier (for sample b), c; the true
condition, and 0.5 the chance level. This definition of decoding accuracy
has methodological advantages (expected value of zero in the absence of
discriminative information; unitless) and is therefore used for all com-
putations. However, note that for illustration purposes in figures we show
decoding accuracy as percent correct classification.

Decision-value-weighted decoding accuracy

A possible drawback of decoding accuracy as a distance metric in RSA
is the loss of information due to the discretization into correct and
incorrect predictions (Walther et al., 2016). Yet, all four classifiers
construct some form of an internal continuous decision value (DV),
which can be used to ameliorate the drawbacks of discretization. For the
present set of classifiers, the decision value DV was either the absolute
distance to a decision boundary (LDA, SVM, WeiRD) or the probability
for the predicted class minus the chance level 0.5 (GNB).

The dissimilarity measure based on DV-weighted decoding accuracies
was defined as follows:

1 &
dpy =~ > DV,(8,cb —0.5) ©)
Ng b=1

Note that the scale of decision values (and thus the scale of dpy) depends
on the applied classifier and the dataset.

Although there are other methods to incorporate graded information
from classification, such as the area under the receiver operator curve
(AUQ), these require a sufficient number of samples in the cross-
validation test set and are thus not suited for our analysis pipeline. For
instance, given the two test samples in our cross-validation test set, the
AUC could only take three values (0, 0.5, 1) and would thus not provide a
finer level of differentiation compared to accuracy by itself.

Non-cross-validated distances

Non-cross-validated distances do not require partitioning of the data
and can be applied to patterns x and y averaged across all samples in a
data set. This has both advantages and disadvantages as compared to
cross-validated distances. The advantages are that 1) the distance mea-
sure is often more robust because distances are computed on a larger set
of data, and 2) the procedure is computationally more efficient, as the
distance measure is computed only once for a comparison of two con-
ditions. The main disadvantage is that non-cross-validated distances, in
addition to estimating the true underlying distance, also capture the
dissimilarity due to any source of noise. As a consequence, the measured
distances are biased by noise (see also, Walther et al., 2016).

Here we applied non-cross-validated distances after averaging the
pattern vectors across all pseudo-trials of a condition. We evaluated two
distance measures, the (squared) Euclidean and the Pearson distance,
defined as follows:

Bctigean(X6Y) = (X =) (x — ' 4
rearon (¢, ) = 1 — _covixy) )
Pearson 7.)' - aI(x)va_r(y)

Cross-validated distances

To obtain unbiased measures of the true dissimilarity, as argued
above it is necessary to compute distances in a cross-validated procedure.
For this, the pattern vectors of one data partition are projected on those of
an independent (validation) partition. As the noise components of the
pattern vectors can be assumed to be mostly orthogonal across partitions,
they become eliminated by cross-validation (mathematically, note that
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the projection product of orthogonal vectors is zero).

This property of cross-validation has two key advantages. First, it can
improve the reliability of distance estimates when noise levels differ
between measurements. Second, unbiased distances enable testing of
ratio-based hypotheses, such as whether one distance is twice as big as
another distance, or whether a distance is different from zero (Walther
et al., 2016). Such a test would not be sensible if distances are affected by
noise as in the case of non-cross-validated distances or classification.

Equations (6) and (7) define the cross-validated (c.v.) variants of the
(squared) Euclidean and the Pearson distance:
¥y ©)

d]%:uclidcan.c.xn(x7y) = (x _y)[/\](x

)=1- %(COV(X[A] Vi) + VX, Yiay))
B \/cov(x 8 )V (Y, Vi)

dPearsomc.v.(xvy =

where A and B denote the two partitions of the data within each cross-
validation fold (A: base partition comprising all but 2 left-out pseudo-
trials; B: validation partition comprising the 2 left-out pseudo-trials).

A practical issue for cross-validated Pearson distances is the fact that
the variances in the denominator can be very small or even negative,
leading to exceedingly negative, exceedingly positive or imaginary dis-
tances. To accommodate this issue, we regularized the cross-validated
Pearson distance in three ways. First, we enforced a positive lower
bound ¢ for the variance. As a sensible lower bound depends on the
scaling of the data, the parameter € was set to 10% of the non-cross-
validated variance of data partition A (the value of 10% was deter-
mined empirically). Second, we enforced a lower bound for the denom-
inator, for which the minimum value was set to 25% of the non-cross-
validated denominator (likewise determined empirically). And third,
we bounded the resulting Pearson distance between 0 and 2 (i.e., cor-
responding to the bounds of the non-cross-validated Pearson distance).

7)

Within-class-corrected distances

As outlined above, condition-nonspecific response patterns are a
ubiquitous phenomenon in neuroimaging measurements. Critically, such
condition-nonspecific patterns can impair the accuracy of RSA when they
differentially affect specific conditions in two compared modalities (e.g.,
MEG and behaviour). Here we propose, as a remedy for condition-
nonspecific patterns, a procedure we refer to as within-class correction,
where within-condition dissimilarities are subtracted from between-
condition dissimilarities. Within-class correction has been previously
used to estimate the discriminatory power of activation patterns (Golarai
et al., 2007; Haxby et al., 2001; Weiner et al., 2010). In the context of
RSA, it may provide a solution to remove condition-nonspecific patterns
in the computation of distance-based dissimilarities.

In addition to removing condition-nonspecific responses, within-class
correction can yield unbiased distance estimates under certain circum-
stances. However, for the two distance measures under investigation this
applies only to the Euclidean distance. By contrast, the within-class-
corrected Pearson distance is not unbiased in the presence of noise, as
both within- and between-condition distances approach 1 with
increasing noise and the within-class-corrected distance thus 0. For the
Euclidean distance, within-class correction yields an unbiased measure
only if the within-condition noise is at the same level as between-
condition noise. The fact that within-class correction is thus not gener-
ally unbiased is a disadvantage compared to cross-validation.

Mathematically, for the within-class-corrected distances (w.c.c.) we
subtract the average within-condition distance from the between-
condition distance:

N Ny

sz x.,Y;)

Ny N

AP

=1 j=it1

dyee. (X,y) = (xi, ;) +d(¥:.¥;))

®
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where d is the given distance measure and N, =5 is the number of
pseudo-trials of a condition. While the first double sum represents the
average distance of all pairwise pseudo-trial combinations between the
two compared conditions (between-condition distance), the second and
subtracted double sum represents the average distance of all pairwise
pseudo-trial combinations within each of the two conditions (within-
condition distance).

Decoding

Decoding uses classification to quantify the discriminability of acti-
vation patterns pertaining to a set of experimental conditions (Cox and
Savoy, 2003; Haxby et al., 2001; Haynes and Rees, 2005; Kamitani and
Tong, 2005). Here, we computed decoding accuracies for all pairwise
combinations of conditions and all permutations and then averaged
across permutations and conditions, separately for each time point. As a
result, we obtained a single average decoding accuracy time course for
each participant.

Representational similarity analysis

The goal of representational similarity analysis (RSA; Kriegeskorte
et al., 2008) applied to neuroimaging data is to characterize the (dis)
similarity of activation patterns for a set of experimental conditions. The
dissimilarities between all pairwise combinations of conditions are
organized in representational dissimilarity matrices (RDMs). In the pre-
sent work, to construct RDMs we computed dissimilarities for all pairwise
combinations of conditions and all permutations and then averaged
across permutations, separately for each time point. As a result, we ob-
tained N¢ x N¢ RDMs for each time point and participant.

Reliability measures

While decoding accuracies can be directly compared to find the best
classifier for decoding, such a direct comparison is not possible across the
diverse full set of dissimilarity measures (decoding accuracies, decision
values or distances) that can be used to construct RDMs in RSA. For this
reason, we used the session-to-session reliability of RDMs as a perfor-
mance measure that generalizes across types of dissimilarity measures.
The rationale for using reliability was that more robust and faithful
dissimilarity measures show more replicable RDMs across sessions.

Here, we computed reliabilities between sessions, exploiting the fact
that the data set included two equivalent experimental sessions for each
participant. In the following, we consider two types of RDM reliability.

First, using the Pearson correlation coefficient, we computed the
strength of a linear relationship between two RDMs, regardless of mean
and scaling. Mean and scale invariance can be desired properties, e.g.
when the mean of two RDMs differs due to varying noise levels or when
the scaling differs due to different transfer functions of the involved
measurement devices. The pattern reliability was defined as follows:

cov(d;,d,)

var(d, )var(d,) ©)

Rpaem =

where d; and dy represent vectorised RDMs (i.e., the flattened lower
triangular part of an RDM) pertaining to the two sessions. Rpatern Can
take values between —1 and 1.

On the other hand, it may often be deemed important that two RDMs
are as close as possible in terms of their Euclidean distance, thus
respecting both mean value and scaling. For instance, one may have
reasons to believe that mean differences between RDMs reflect truthful
differences that are not trivially explained by different noise levels (e.g.,
when noise levels were controlled or cross-validation was performed).
We therefore additionally computed the normalised sum of squared
differences (SSQ) between two RDMs, referred to as the SSQ reliability
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(Walther et al., 2016):

S (d— )
SO (d )

where Rggq can take values between 0 and 1.

Note that for the non-cross- and cross-validated Pearson distance, we
computed the SSQ reliability on 1—d;; and 1—dy; in order to enforce an
expected dissimilarity of zero for random activation patterns, and thus an
expected SSQ reliability of zero. This ensured comparability of the
Pearson distance with other dissimilarity measures in terms of SSQ
reliability.

Non-cross-validated Euclidean distances likewise do not lead to a
distance of zero for random activation patterns. However, since this is a
fundamental property of the noise dependency, rather than a technicality
as whether to use d or 1—d, we omitted the non-cross-validated Euclidean
distance when reporting SSQ reliability.

Rsso =1 — 10)

Statistical testing

Statistical tests were applied to compare dissimilarity measures either
in a time-resolved manner or averaged across time points within a time
window of interest. In both cases, sign permutation tests were performed
against the null hypothesis of no difference. We employed a full sign
permutation scheme across 16 participants. The minimal possible p-value
was thus 1/2'6 =1.526.107°, which is denoted as p< 2716 in the text.
For time-resolved statistical tests, a sign permutation test was used with
Bonferroni-correction for the number of time points.

Avadilability of data and code

The MEG data analysed here are available for download online from
the project page of the original publication (http://userpage.fu-berlin.
de/rmcichy/nn_project_page/main.html) or upon request from the au-
thors. In addition, this article is accompanied by an online tutorial with
code (Python, MATLAB) and instructions to reproduce key results,
available at https://github.com/m-guggenmos/megmvpa.

Results
Decoding accuracy: comparing classifier performance

Overall, four different classifiers (LDA, SVM, WeiRD and GNB) with
and without multivariate noise normalisation (MNN) were evaluated,
where each classifier predicted stimulus category labels from MEG data
in a time-resolved fashion. Time courses of decoding accuracy were
computed by comparison with true category labels (Fig. 2).

An analysis of decoding accuracy time courses showed that the ac-
curacy was above chance for all tested classifiers at each time point of the
time window of interest (p < 0.05, sign permutation test, Bonferroni-
corrected for 100 time points). The accuracy curves peaked around
100 ms (95% confidence intervals illustrated as black bars in Fig. 3 over
curves) and decreased afterwards.

For a summary statistical comparison of classifiers, we averaged ac-
curacies across time (from 50 to 550 ms, i.e. accounting for an ~50 ms
offset between stimulus presentation and cerebral processing). In a first
step, we investigated the effect of MNN and found that applying MNN
prior to classification boosted classification performance between 5 and
20% percent correct classification. This makes MNN an indispensable
preprocessing step. Next, we compared decoding accuracy across noise-
normalised classifiers. Noise-normalised LDA, SVM and WeiRD per-
formed comparably well with peak accuracies of over 90% correct clas-
sification, while GNB performed markedly worse (Figure S2). Thus, LDA,
WeiRD and SVM with MNN were suitable choices for MEG pattern
classification.
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Fig. 2. Decoding: time-resolved MEG decoding accuracies. Color-coded
curves (as in legend) report decoding accuracy (here percent correct) for the
tested set of classifiers (LDA, SVM, WeiRD, GNB) with and without multivariate
noise normalisation (norm.). Horizontal lines at the top of the figure mark sta-
tistically significant time points (sign permutation test, Bonferroni-corrected for
the number of time points (100), corrected significance level p < 0.05). Semi-
transparent black bars indicate the bootstrapped 95% confidence interval for
peaks (10° samples with replacement).

As an aside, for SVM it is common practise to standardize data by z-
scoring before fitting. For MEG and EEG data, this is often done in the
form of normalizing epoched data channel-wise by subtracting the mean
and dividing by the standard deviation of the baseline period. In the
terminology of the current manuscript, this amounts to a form of uni-
variate noise normalization. For SVM specifically, we compared this
standardization to the MNN procedure employed here (Figure S3), and
found that it leads to lower peak decoding accuracy than MNN, and
lowers accuracy when combined with MNN compared to MNN alone.
Thus, consistent with all other analyses we did not standardize data
before submitting it to SVM classification.

In conclusion, MNN is a highly recommended preprocessing step
prior to classification. In terms of classifiers, our results indicate that
LDA, SVM and WeiRD are all suitable and powerful classifiers and are
thus recommended for multivariate decoding in MEG research.

Distance measures: characteristics and the effect of cross-validation and
within-class correction

Before investigating reliabilities, it is helpful to identify special
properties of different distance measures, as those impact the proper
interpretation of session-to-session reliabilities. We thus begin our anal-
ysis with a characterization of raw dissimilarity time courses. Readers
familiar with these properties or only interested in reliability may skip
this section.

Euclidean distance: noise dependency and a remedy through cross-validation

Without cross-validation, the non-cross-validated Euclidean distance
(Fig. 3A, dashed yellow curve) remained at a relatively high level from
around 100 ms onwards, even though our classification analysis indi-
cated a decrease of informative category-related signals during these
later time points. How does cross-validation affect the Euclidean distance
estimates across time? We found that cross-validation led to a gradual
decrease of Euclidean distance estimates after 100 ms (Fig. 3A, solid
yellow curve), consistent with the decrease in decoding accuracy. This
result confirms the notion that cross-validation yields unbiased distance
measures in the presence of noise (Walther et al., 2016) and thus ad-
dresses the noise inflation observed without cross-validation.
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Pearson distance: the effect of cross-validation and the critical issue of
condition-nonspecific signal influences

Different from the Euclidean distance, the Pearson distance between
entirely random patterns has an expected value of 1, regardless of the
general noise level. Thus, already without cross-validation, the Pearson
distance has a meaningful zero point (i.e., when subtracting a constant
value of 1). Yet, the Pearson distance is by no means unaffected by noise:
as correlation coefficients measuring non-zero correlations decrease with
increasing noise, the measured Pearson distance will always show a
smaller deviation from 1 compared to the true Pearson distance. This
raises the question whether cross-validation, just like in the case of the
Euclidean distance, could enable more faithful estimates of the Pearson
metric.

The results for our data conformed to these expectations. During the
baseline phase (0-100 ms) for which we can assume random MEG pat-
terns, the Pearson distance was 1 both without and with cross-validation
(Fig. 3B). With the onset of the stimulus, however, the cross-validated
Pearson distance (solid curve) became markedly lower than the non-
cross-validated Pearson distance (dashed curve). This indicates that the
non-cross-validated Pearson distance underestimated the true (positive)
correlation between MEG patterns, a noise bias that was moderated by
cross-validation.

Both without and with cross-validation, the time course of the Pear-
son distance showed a shape that may seem surprising at first: Pearson
distances became smaller after stimulus onset, i.e. the patterns of different
conditions became more similar. Indeed, the Pearson distance time
courses showed an almost inverted shape compared to the cross-
validated Euclidean distance or decoding accuracies. The reason is
that, although different conditions differed in stimulus content, they
nevertheless shared a number of commonalities, not least the fact that
any stimulus was presented or that there was always a stimulus offset (peak
between 600 and 700ms). However, when activation patterns are
rendered highly similar through a dominance of condition-nonspecific
signals, the goal of RSA is at risk, i.e. mapping the specific dissimilarity
structure between conditions.

To correct for condition-nonspecific signals, we subtracted the mean
pattern from all conditions (cocktail-blank removal) for the Pearson
distance (Fig. 3C). We found that cocktail-blank removal was indeed
successful in removing the bulk of condition-nonspecific signal contri-
butions. However, confirming earlier work (Diedrichsen et al., 2011;
Garrido et al., 2013; Walther et al., 2016), cocktail-blank removal led to
negative correlations between activation patterns of conditions (i.e.,
Pearson distances greater than 1), even in the baseline phase. Because of
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these artefactual dependencies, in the present work we limited the
application of cocktail-blank removal to assessing a potential inflationary
effect of condition-nonspecific response patterns on RDM reliability.

Within-class correction reveals the condition-specific component of non-cross-
validated distances

Like cocktail-blank removal, the goal of within-class correction is to
eliminate condition-nonspecific components from activation patterns
(e.g., Haxby et al, 2001). This is achieved by subtracting
within-condition distances from between-condition distances. The un-
derlying premise is that condition-nonspecific signals not only affect
distances between different conditions, but also between repeated mea-
surements of the same condition. Within-class correction thus removes
signal and noise components unrelated to the difference between
conditions.

We found that, when using within-class correction, the raw dissimi-
larity time courses based on the Euclidean and Pearson distance metrics
were more similar to the time courses of decoding accuracy and thus had
closer bearing to the discriminatory power of condition-specific activa-
tion patterns (Fig. 4). For the Euclidean distance, within-class correction
largely eliminated the substantial condition-nonspecific noise component
that caused high Euclidean distances long after stimulus onset (Fig. 4A).
In contrast, for the Pearson distance, within-class correction removed the
previously dominating condition-nonspecific signal component (Fig. 4B). In
particular, within-class correction revealed that the Pearson distance of
condition-specific signal components indeed increased with stimulus
presentation, just as in the case of the Euclidean distance. We thus
conclude that within-class correction accounted for the effect of condi-
tion-nonspecific response components on dissimilarity, which otherwise
affected the non-cross-validated Euclidean and Pearson distance as well
as the cross-validated Pearson distance.

Reliability: finding the best dissimilarity measure for representational
similarity analysis

We used the reliability of RDMs across measurements to compare the
performance of all dissimilarity measures under investigation. Two
different reliability measures were applied: pattern reliability, a
correlation-based measure assessing pattern similarity irrespective of
mean and scaling, and SSQ reliability, a Euclidean-distance-based mea-
sure assessing the similarity taking mean and scaling into account.

We report reliability time courses for all investigated dissimilarity
measures: decoding accuracies (Fig. 5A), DV-weighted decoding
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Fig. 4. Within-class-correction of non-cross-validated
distances. Top panels show within- and between-condition
distances, bottom panels show difference curves (between
minus within, referred to as within-class-corrected). Multi-
variately noise normalised (A) Euclidean distance and (B)
Pearson distance. Note that the between-condition Euclidean
and Pearson distances shown here are not identical to the
non-cross-validated distances of Fig. 3, as they are based on
the average distance between all pairwise combinations of
pseudo-trials of the two conditions (non-cross-validated dis-
tances are computed on the averages across pseudo-trials of
each condition). Shaded areas indicate bootstrapped standard
errors across participants (10° samples with replacement).

Fig. 5. Time-resolved pattern and SSQ reliability
of RDMs across sessions. For clarity, all measures
are depicted only with multivariate noise normal-
isation. The shaded grey area depicts the time win-
dow of interest [50ms; 550 ms]. (A) Decoding
accuracies. (B) Decision-value-weighted decoding
accuracies. (C) Non-cross-validated distances. Note
that for the Euclidean distance, the SSQ reliability
cannot be meaningfully computed and is therefore
omitted. (D) Cross-validated distances. (E) Within-
class-corrected distances.

Abbreviations: norm.=multivariate noise normal-
isation; ctl.blk. = cocktail-blank removal.
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accuracies (Fig. 5B), non-cross-validated distances (Fig. 5C), cross-
validated distances (Fig. 5D) and within-class-corrected distances

(Fig. 5E). For summary purposes, we additionally computed the average
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and the maximum reliability over the time window of interest (Fig. 6;
Figure S4 for direct comparisons).
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Fig. 6. Average and maximum reliability of RDMs
across sessions. Bars represent the average reliability,
free-floating lines the maximum reliability within the time
window [50 ms; 550 ms]. Error bars indicate bootstrapped
standard errors across participants (10° bootstrap sam-
ples).

Abbreviations: norm. = multivariate noise normalisation;
ctl.blk. = cocktail-blank removal.
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Multivariate noise normalisation improves reliability

As evident from Fig. 6, MNN substantially improved the reliability of
all dissimilarity measures. Indeed, in most cases the choice of a dissim-
ilarity measure itself was less critical than whether MNN was performed
or not. Across dissimilarity measures, MNN led to an average gain of
ARpatern = 0.07 and ARggg = 0.11. In view of these generally beneficial
effect of MNN on reliability, below we restricted all further analyses to
cases where MNN was applied.

The most accurate classifiers are also the most reliable classifiers

We showed earlier that LDA, SVM and WeiRD were comparable in
accuracy, while GNB performed markedly worse. We found that this
pattern of results was matched by our analysis of reliability. LDA, SVM
and WeiRD showed only small reliability differences, while GNB fell off
by a large margin. Between LDA, SVM and WeiRD, WeiRD slightly out-
performed LDA (ARpattern = 0.023, p < 2716, sign permutation test) and
SVM (ARpattern = 0.023, p < 2719) in terms of pattern reliability and SVM
in terms of SSQ reliability (ARgsq=0.004, p=0.036); all other com-
parisons were not significant.

We conclude that LDA, SVM and WeiRD were all suitable choices with
respect to RDM reliability. In our data set, WeiRD was slightly more
reliable than LDA and SVM. More generally, the fact that the reliability
analysis yielded much the same conclusion as a comparison of decoding
accuracies adds validation to the rationale of using reliability as a per-
formance criterion for dissimilarity measures.

The non-cross-validated Euclidean and Pearson distance are equally reliable
when accounting for condition-nonspecific response components
Judging between the Euclidean and the Pearson distance, which is the

0.50
SSQ reliability
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more reliable distance measure when no cross-validation or within-class
correction is performed? We found that there are two answers to this
question.

When considering pattern reliability,! the Pearson distance out-
performed the Euclidean distance by a large margin (ARpattern = 0.057,
p< 2716). Indeed, in this view, the non-cross-validated Pearson distance
was the most reliable measure across all tested measures.

However, given the strong contribution of condition-nonspecific
response components to the Pearson distance, the question arises to
what degree these shared components might inflate the reliability. With
respect to the goals of RSA this is a critical question, because reliability
gains based on response components that are shared between condi-
tions are of no use. Evaluating the non-cross-validated Pearson distance
after cocktail-blank removal revealed that the reliability of the non-cross-
validated Pearson distance became indistinguishable from the non-
cross-validated Euclidean distance (ARpgttern = —0.007, p = 0.17). This
suggests that the reliability advantage of the non-cross-validated
Pearson distance was based on condition-nonspecific response
components.

In sum, the non-cross-validated Euclidean and Pearson distance are
equally reliable when condition-nonspecific response components are
subtracted through cocktail-blank removal.

! Note that the SSQ reliability cannot be meaningfully computed for the non-
cross-validated Euclidean distance and thus is not considered in this
comparison.
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Cross-validation is robust for the Euclidean distance, but not for the Pearson
distance

Two aspects of cross-validation may impact reliability in opposite
ways. On the one hand, cross-validation provides faithful distance mea-
sures that are largely unbiased in the presence of noise. This could benefit
reliability in cases where noise levels differ between measurements. On
the other hand, the split of the data into cross-validation folds might
negatively impact the robust estimation of distances and thus reliability.

In our data, we found a marginal reduction in pattern reliability when
cross-validating the Euclidean distance as compared to no cross-
validation (ARpattern = —0.005, p = 0.068) and a significant loss in case
of the Pearson distance (without cocktail-blank: ARpagtern = —0.059,
p< 2716, with cocktail-blank: ARpagtern = —0.029, p< 2716). In terms of
SSQ reliability, cross-validation had a negative effect on the Pearson
distance without (ARgsg= —0.017, p=0.0001), but not with cocktail-
blank removal (ARgsg=0.021, p < 2716). Detrimental effects of cross-
validation on pattern reliability were confirmed by simulation
(Figure S5), suggesting that they were generic and not specific to our data
set.

Taken together, while cross-validation has a unique advantage in
terms of providing unbiased distance estimates, it is robust only for the
Euclidean distance and reduces reliability for the Pearson distance.

Within-class correction provides condition-specific estimates of the Pearson
distance at high reliability

Within-class correction addresses the issue of condition-nonspecific
signal and noise components that are shared between activation pat-
terns of different conditions. Yet, how reliable are the RDMs generated
through within-class-corrected distances compared to non-cross- and
cross-validated distances?

For the Euclidean distance, we found equal reliability of within-
corrected distances and non-cross-validated distances
(ARpattern = —0.001, p=0.33) and a slight advantage of within-class
correction over cross-validation (ARpagtern = 0.007, p=0.0002;
ARgso = 0.022, p < 2716). Thus, in terms of reliability only, within-class
correction of the Euclidean distance is not associated with large
changes in reliability.

For the Pearson distance, the effect of within-class correction strongly
depended on whether non-cross- and cross-validated distances were
computed with prior cocktail-blank removal. Without cocktail-blank
removal, within-class-corrected distances were generally inferior to
non-cross-validated (ARpattern = —0.066, p < 2716, ARgsg = —0.196,
p< 2716) and cross-validated distances (ARpattern = —0.007, p =0.100;
ARgso=—0.213,p < 2716), By contrast, when the within-class-corrected
Pearson distance was compared to the cocktail-blank-corrected non-
cross- and cross-validated distances this pattern was largely reversed.
Here, within-class-corrected distances showed strong reliability advan-
tages compared to cocktail-blank-corrected non-cross-validated
(ARsso = 0.277, p < 27 but ARpatern = —0.002, p=0.33) and cross-
validated (ARpagtern = 0.027, p = 0.0004; ARgso=0.299, p < 2718) dis-
tances. Thus, not only did within-class correction rectify the effect of
condition-nonspecific response components on the Pearson distance in a
more valid manner than cocktail-blank removal, it also did so at higher
reliability. Note that the much reduced SSQ reliability of non-cross- and
cross-validated Pearson distances caused by cocktail-blank removal is
explained by the fact that the removal of condition-nonspecific compo-
nents leads to a substantial decrease of correlation coefficients (denom-
inator in Eq. (10)) that is not matched by an analogue decrease of session-
to-session variability (nominator in Eq. (10)).

Overall, our data showed that within-class correction had a small but
positive influence on the reliability of Euclidean distances, and a strong
positive effect on the reliability of the Pearson distances when those were
corrected for condition-nonspecific response components. Of note, this
pattern of results was confirmed by simulation (Figure S6). As a main
conclusion, we recommend to use within-class correction for the Pearson
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distances when condition-nonspecific responses are deemed problematic.

Decision-value weighting narrows the gap in pattern reliability between
classification-based and distance-based RSA

Disadvantages of decoding accuracies for RSA are that 1) gradual
information contained in the decision values of classifier predictions is
lost by using a binary measure for the correctness of predictions, and 2)
decoding accuracies naturally decrease with noise and are thus not un-
biased. Walther et al. (2016) previously showed that these disadvantages
can substantially impair pattern reliability of fMRI data. We observed
results consistent with this prediction for MEG, i.e. decoding accuracies
exhibited generally lower pattern reliability than distances (Fig. 6).
Notably this pattern was reversed for SSQ reliability, where decoding
accuracies generally outperformed distance measures. In this case, the
discretization of decoding accuracies has a positive effect, likely because
discretization constrains individual dissimilarity estimates to —0.5 and
0.5 which prevents unreasonably large differences between activation
patterns (e.g., caused by measurement noise). Nevertheless, as the
impairment of pattern reliability for decoding accuracies is substantial,
raw decoding accuracies should be avoided for RSA.

A potential remedy is to weigh the correctness of the predictions by
decision values (DVs) (see Fig. S5 for raw time courses of DV-weighted
decoding accuracies). We found that for most classifiers, DV-weighting
substantially increased the pattern reliability compared to raw decod-
ing accuracies (Fig. 6B). Yet, DV-weighting impaired the SSQ reliability
for most classifiers (exception: SVM), likely because decision values were
much more volatile and prone to extreme values than bounded decoding
accuracies. Thus, while DV-weighting can lead to considerable im-
provements in pattern reliability, this may have to be traded off against
an impairment in SSQ reliability.

Across classifiers, we found that the pattern reliability of DV-
weighted decoding accuracies was higher for WeiRD than LDA
(ARpattern = 0.072, p < 2716) and SVM (ARpatern = 0.088, p < 2719), and
higher for LDA than SVM (ARpattern = 0.016, p = 0.028). In terms of SSQ
reliability, SVM outperformed LDA (ARssq=0.087, p< 2716 and
WeiRD (ARgsq=0.071, p< 2716) and WeiRD outperformed LDA
(ARgsg = 0.022, p = 0.012). Thus, when classification-based dissimilarity
measures are desired for RSA, DV-weighted decoding accuracies of
WeiRD and SVM may be particularly attractive choices depending on
whether one prioritizes pattern and SSQ reliability, respectively.

How does the reliability of DV-weighted decoding accuracies
compare with distance measures? We here report the comparison with
the distance schemes for the Euclidean and Pearson metric that we rec-
ommended based on the results in the previous two sections: cross-
validated Euclidean distances and within-class-corrected Pearson dis-
tances. Our results show that LDA and SVM, despite the improvements in
pattern reliability through DV-weighting, could not fully reach the
pattern reliability of these two distance measures. However, DV-
weighting of WeiRD decoding accuracies yielded higher pattern reli-
ability than both the cross-validated Euclidean distance
(ARpattern = 0.025, p < 2716) and the within-class-corrected Pearson dis-
tance (ARpattern = 0.029, p < 2716). In terms of SSQ reliability, while DV-
weighting caused a lower SSQ reliability for WeiRD and LDA compared
to the reference distances, the SSQ reliability of SVM became superior to
the cross-validated Euclidean distance (ARpattern = 0.052 p < 271%) and
the within-class-corrected Pearson distance (ARpagtern = 0.024,
p=0.0001). Thus, DV-weighting narrows the gap in pattern reliability
between classification- and distance-based dissimilarity measures, but
largely diminishes the advantage in SSQ reliability for classifiers relative
to distances.

In sum, DV-weighting ameliorated the impairment in pattern reli-
ability due to the lossy binarization in correct and incorrect responses
and is thus a recommendable procedure for classification-based RSA.
Regarding the choice of the classifier for DV-weighted accuracies, we
recommend WeiRD for high pattern reliability and SVM for high SSQ.
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Discussion
Summary

We assessed and compared the reliability of dissimilarity measures
for representational similarity analysis of MEG data. In brief, we found
that 1) multivariate noise normalisation of the data strongly improved
the accuracy of classifiers and the reliability of all dissimilarity measures,
2) distances were in general superior to classifiers in terms of pattern
reliability, a difference that 3) could be largely ameliorated through
decision-value weighting of decoding accuracies, 4) in terms of reliability
the Euclidean metric was en par with or better than the Pearson metric
when correcting for condition-nonspecific response components, 5)
cross-validation provided robust unbiased distance estimates for the
Euclidean distance, but came at the cost of slight reliability reductions
and was unstable for the Pearson distance, and 6) within-class correction
addressed the problematic influence of condition-nonspecific response
components on Pearson distances.

Multivariate noise normalisation improves decoding accuracies and
reliability

Multivariate noise normalisation substantially improved decoding
accuracies and the reliability across classifiers and distance measures.
Importantly, the success of noise normalisation depended on a number of
important methodological details.

First, the efficacy of noise normalisation critically depended on the
specific method used to compute the cross-sensor covariance matrix X.
For instance, computing X just on the baseline data (baseline method)
degraded RDM reliabilities, which may either suggest that using the
baseline phase provided insufficient data for a robust estimate of %, or
that the baseline phase was not representative of the noise characteristics
during stimulus presentation. We believe that our data speak to the latter
interpretation, as another method that estimated X separately for each
time point (time point method) led to equal improvements in reliability. As
a bottom line, we thus recommend to always include data from the
stimulus period in the estimation of X, although care is required to ensure
that ¥ is not compromised by signal information. Here, this was achieved
by computing X for each condition separately and subsequent averaging
across conditions.

Second, it should be noted that for our method of choice (epoch
method), univariate noise normalisation was already responsible for a
large gain in reliability. Thus, the increase in reliability was largely based
on a univariate down-weighting of noisy sensors and up-weighting of
sensors with little noise variance.

Yet third, there was nevertheless a significant advantage of MNN
relative to UNN. Thus, emphasizing spatial frequencies of the MEG pat-
terns with lower variance and de-emphasizing frequencies with higher
variance (i.e., the multivariate aspect of MNN) yielded a further gain in
reliability.

Overall, multivariate noise normalisation is a highly recommended
preprocessing step irrespective of other analytic choices. However, the
specific implementation of noise normalisation has to be chosen carefully
and should consider potentially different noise structures between
baseline and stimulus-driven activity.

Choosing a classifier for decoding

When using multivariate decoding to characterize brain representa-
tions it is in most cases desirable to maximize decoding accuracy. The
main reason is that most neuroimaging measurements including MEG
suffer from decreased sensitivity, i.e. only a fraction of the information
that is encoded by the underlying neuronal ensembles can be decoded at
the level of MEG or at the level of other non-invasive techniques. It is thus
desirable to fully exploit every bit of information that is contained in
these measurements, thereby also increasing the chance to meaningfully
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test more subtle comparisons between experimental conditions.

Here, we compared four classifiers (LDA, SVM, WeiRD, GNB) with
and without multivariate noise normalisation and found two main re-
sults. First, whether or not to perform MNN was more critical than the
choice of a classifier itself, yielding improvements in (peak) decoding
accuracy between 5 and 20%. Second, comparing classifiers with prior
MNN, we found that LDA, SVM and WeiRD achieved all high and com-
parable levels of accuracy (>90% peak accuracy in our data set), while
GNB performed much worse. A likely reason for the relatively low per-
formance of GNB is the non-independence of sensors in our data set,
which violates the assumption of feature independence implicit to GNB.
This is consistent with the observation that GNB classification perfor-
mance improves when features are decorrelated by means of principal
component analysis (see Grootswagers et al., 2017). Overall, for analysis
pipelines similar to ours, we strongly advise the use of multivariate noise
normalisation and recommend LDA, SVM and WeiRD as suitable classi-
fiers for MEG decoding.

Decision-value weighting boosts the pattern reliability of decoding
accuracies

Confirming previous work, we found that the pattern RDM reliability
of decoding accuracies was markedly impaired compared to distance
measures (Walther et al., 2016). One likely reason for this clear handicap
of decoding accuracies is the loss of precision through the binarization of
predictions (Walther et al., 2016). Another reason could be the fact that
decoding accuracies naturally decrease with noise and are thus not un-
biased. Decoding accuracies are thus not recommended for RSA.

To address these problems of decoding accuracy, in the present work
we introduced DV-weighting of decoding accuracies as a potential solu-
tion. By weighting the correctness of single predictions with classifier
decision values, gradual information is reintroduced into classification-
based dissimilarity measures. Our results showed that DV-weighting
indeed rectified the loss in pattern reliability for classification,
advancing it close to the level of distance measures.

As noted above, there are other methods to incorporate graded in-
formation from classifier decision values (e.g., AUC) which could not be
used due to the limited number of samples (pseudo-trials) in our cross-
validation test sets. However, in settings with more samples or
different cross-validation procedures these methods become feasible.
Future research could compare the performance of DV-weighed accu-
racies to these alternative methods and evaluate their relative advantages
and disadvantages.

In sum, our results discourage the use of raw decoding accuracies for
RSA and instead advocate DV-weighting of accuracies if classification-
based RSA is desired.

Deciding between the Pearson and the Euclidean distance metric

If reliability were the only criterion, our results would strongly favour
the non-cross-validated Pearson distance over the non-cross-validated
Euclidean distance. However, this conclusion should be critically vet-
ted in view of an important caveat: while the Euclidean distance is
invariant to condition-nonspecific response components, the Pearson
distance is strongly affected by such signals. Indeed, in most cases the
Pearson distance will be a mixture of the dissimilarity due to both
condition-specific signals (i.e., the signal of interest) and condition-
nonspecific signals. This hampers interpretation not only of Pearson
distance per se, but also of its reliability which can be inflated by
condition-nonspecific response components.

Empirically, an inflation of reliability through condition-nonspecific
response components was supported by two facts. First, the reliability
of the Pearson metric was dramatically reduced when the mean pattern
was removed prior to distance computation (cocktail-blank removal).
Acknowledging that this procedure introduced new dependencies —a
negative correlation — between conditions, the result conclusively
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indicates that the mean pattern was a driving factor for the high reli-
ability of the Pearson distance. Second, the reliability of the Pearson
distance was likewise reduced when distances were subjected to within-
class correction, while this was not the case for the Euclidean distance. In
both cases, the reliability of the Pearson distance became indistinguish-
able from the Euclidean distance to the point of being reversed in favour
of the Euclidean distance. These two analyses thus strongly suggest that
the high reliability of the non-cross-validated Pearson distance was partly
based on condition-nonspecific response components.

Overall, in the absence of a priori reasons to prefer a mean/scale-
invariant dissimilarity measure, we thus recommend the Euclidean dis-
tance over the Pearson distance for better interpretability and higher
condition-specific reliability. If mean/scale invariance is desired, it is
advisable to carefully check the impact of condition-nonspecific response
components on the goal of RSA. In a best-case scenario, these compo-
nents cancel out in a comparison of RDMs across modalities and have
little effect on accuracy. However, if the contribution of condition-
nonspecific components substantially differs between modalities in a
condition-pair-specific manner, the accuracy of RSA might be severely
impaired.

The case for cross-validation

The unique advantage of cross-validation is that it provides unbiased
estimates for distances between conditions. Indeed, unbiased distance
estimates are critical for a number of research questions. Consider that
we construct an RDM using the Euclidean distances measure and are
interested in whether certain parts of the RDM are different from zero,
i.e. we want to test whether the conditions in these parts are meaning-
fully different in terms of their neural representations. This test would be
impossible for the non-cross-validated Euclidean distance, which is
inflated by noise and produces non-zero distance estimates even for
identical neural representations. Cross-validation enables testing this
hypothesis by cancelling out noise between partitions of the data,
thereby introducing a meaningful zero point. In a similar vein, cross-
validation allows testing for ratios between distances e.g. whether dis-
tance A is twice as big as distance (Walther et al., 2016).

Despite this key advantage, our data and simulations suggest that
cross-validation may come at a cost in terms of reliability. While the
reliability of the Euclidean distance was unchanged by cross-validation in
our data, the reliability of the Pearson distance showed a significant
decrease. These results imply that potential positive effects of cross-
validation on the reliability of the Pearson distance (e.g., increased
robustness with respect to varying noise levels between measurements),
if at all present, could not outweigh the disadvantageous effects of data
splitting in cross-validation. Although a negative effect of data splitting
should be mitigated through averaging across cross-validation folds, this
may not always be fully compensatory.

Despite this potential hit on reliability, for two reasons our results
nevertheless lend support to cross-validation specifically for the
Euclidean distance. First, the non-cross-validated Euclidean distance,
much more than the Pearson distance, was severely distorted in the
presence of noise, which in some cases rendered distance estimates
almost uninterpretable. Thus, the need of cross-validation was especially
pressing for the Euclidean metric. Second, cross-validation was robust for
the Euclidean distance as it did not suffer from instability issues affecting
the cross-validated Pearson distance (see below). Overall, cross-
validation is thus a recommended procedure for the Euclidean distance.

In contrast, we recommend to forgo cross-validation for the Pearson
distance for two reasons. First, the non-cross-validated Pearson distance
is invariant to the level of noise in phases where the true signal is zero
(e.g., baseline). This is because the expected correlation coefficient is
zero in the absence of any signal, irrespective of the noise level. And
second, cross-validation of the Pearson distance was associated with a
consistent and often marked loss in reliability both in our data in simu-
lation. A likely reason for this relatively strong negative impact of cross-
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validation on reliability are the unstable cross-validated variances which
form the denominator of the cross-validated Pearson distance. These
variances can easily reach close-to-zero or negative values in realistic
data sets and thus dramatically distort the resulting Pearson distances. To
address this instability issue, careful regularization is required. Yet, even
if regularization is successful, the techniques and parameters of regula-
rization may differ between modalities, introducing arbitrary choices and
complicating cross-modal comparisons. Together, these results and con-
siderations advise against cross-validating the Pearson distance.

The case for within-class correction

In our data, within-class correction was slightly more reliable than
cross-validation for the Euclidean distance and markedly more reliable
for the Pearson distance (with cocktail-blank removal). Simulation
corroborated this empirical result. Nevertheless, there are additional
considerations that should guide the decision of whether to use a within-
class-corrected processing scheme.

First, within-class correction provides unbiased distance estimates
only for the Euclidean distance metric and only if noise affects within-
and between-condition distances to the same degree. Given highly
similar shapes of cross-validated (Fig. 3A) and within-class-corrected
(Fig. 4A) Euclidean distances, this condition seemed to be met in our
data set, but might not generally be the case. Given that the reliability
gains of within-class correlation relative to cross-validation are very
small in the case of the Euclidean distance (ARpattern/ssg~0.01), cross-
validation therefore remains the recommended procedure for the
Euclidean distance.

Second, in most cases within-class correction will be computationally
costlier than cross-validation. The within-class-corrected algorithm
applied here assessed the full permutation scheme by computing dis-
tances for all combinations of pseudo-trials within a condition and be-
tween conditions. This was feasible due to the relatively small number of
pseudo-trials per condition. However, as the number of permutations
grows quadratically with the number of (pseudo-)trials, random sub-
sampling schemes will become necessary at some point, which adds
algorithmic complexity and potentially a certain degree of randomness.

And third, while these first two considerations might swing the
pendulum to cross-validation, there nevertheless remains the fact that
only within-class correction removes condition-nonspecific signal com-
ponents. This aspect is important for the Pearson distance, which, as
noted above, can be strongly affected by such signals. Thus, if one wishes
to use the Pearson distance without the influence of condition-
nonspecific signal components and without the bias of cocktail-blank
removal, within-class correction is the recommended procedure.

In sum, within-class-corrected distances come both with advantages
(eliminated condition-nonspecific signal contributions, meaningful zero
point, often higher reliability than cross-validation) and disadvantages
(distances are not generally unbiased, increased computational
complexity). We recommend to use within-class correction in cases were
condition-nonspecific signal contributions are a severe issue, as in the
case of the Pearson metric.

Limitations and roadmap for future research

Several limitations apply to our investigation that point towards
future research efforts. First, the present work was focused on MVPA for
MEG and cannot answer to what degree these results generalize to
electroencephalography (EEG). Similarly, it remains an open question
how MEG and EEG can be combined best in the framework of MVPA. A
recent study observed that MVPA methods applied to MEG and EEG
yielded largely convergent results, and that combining MEG with EEG
data revealed more information than either imaging modality alone
(Cichy and Pantazis, 2016). This suggests that the results of the present
work will generalize well to EEG data, and that MEG and EEG can be
fruitfully combined in the MVPA framework. Future investigation is
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necessary to confirm these predictions.

Second, it is unknown whether our results fully transfer to analysis of
brain responses from experimental settings that differ in task, sensory
modality and cognitive function. MEG MVPA has thus far been mostly
applied in studies of visual perception, but is rapidly expanding and
increasingly applied to other modalities (e.g. auditory stimuli; Akram
et al., 2016; Kocagoncu et al.,, 2017) and in different tasks contexts
(Hebart et al., 2017). Future studies that compare analysis options on
data sets from a diverse set of experimental settings are needed to
determine the generality of the findings. To facilitate this process, we
provide the code for the major processing steps in both MATLAB and
Python format.

Third, we investigated MEG MVPA in the sensor rather than in source
space. The reason was that here we focussed on MEG's high resolution in
revealing the temporal rather than the spatial dynamics of neural activ-
ity. Our results here are unlikely to trivially carry over to source space
analysis, as source localization algorithms make additional assumptions
that likely impact the outcome of subsequent analysis choices. In
particular, many source localization methods depend on the estimate of a
covariance matrix across sensors, a step which will likely interact with
subsequent multivariate noise normalization. Similarly, it is likely that
different source localization methods will differently affect subsequent
multivariate analysis. Research efforts that systematically investigate the
interaction between source localization methods and MEG MVPA are
required to shed light on these issues.

Fourth, here we focussed on the analysis of evoked, rather than
induced responses. The analysis of induced responses requires resolution
of MEG data in frequency space that might impact subsequent processing
choices. We hope that the current results can serve as a pointer for future
studies dedicated to the investigation of MEG MVPA in frequency space.

Fifth, reliability of a measure across independent data sets is a widely
acknowledged quality criterion in that it indicates how reproducible
results it. In this sense, session-to-session reliability as used here is
scientifically useful. However, note that we cannot prove from first
principles and with certainty that reliability selects the measure for MEG
RSA that in fact captures the space of representations best. Such verifi-
cation requires knowledge of some ground truth to which results could be
compared, and which is lacking in our case. Future empirical in-
vestigations that relate MEG data to some ground truth, and intricate
computational analysis of RSA measures on artificial data might shed
further light on this open question.

Sixth, here we did not systematically evaluate the effect of feature
selection techniques, such as principal component analysis (PCA) or
nested feature selection (e.g., recursive feature elimination; Guyon et al.,
2002). PCA in particular has shown promise as a feature selection step in
a recent study (Grootswagers et al., 2017) and it would be interesting to
examine the interaction of PCA with the preprocessing steps and
dissimilarity measures considered here. Here, we examined feature se-
lection in a basic analysis by investigating the role of gradiometers and
magnetometers (Supplementary section 7 and Figures S7 and S8). Our
results indicate that planar gradiometers capture most of the information
that is relevant for decoding and RDM reliability. Future studies that
systematically evaluate the feature selection techniques in the framework
of MEG MVPA are needed.

Conclusion and final recommendations

For both decoding and RSA we strongly recommend to apply multi-
variate noise normalisation on the data, which provided a considerable
boost in terms of decoding accuracy and reliability. Importantly, a key
finding of our work is that multivariate noise normalisation is most
effective if covariance matrices are computed based on data that include
stimulus periods. By contrast, we do not recommend to use cocktail-blank
removal as a preprocessing step, which failed at its primary task —
removing dependencies between conditions — by introducing other de-
pendencies, confirming earlier reports (Diedrichsen et al., 2011; Garrido
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et al., 2013; Walther et al., 2016).

If the goal of MVPA is decoding of MEG signals in an information-
based framework (i.e., decoding accuracy), we recommend to use LDA,
SVM or WeiRD as classifiers, which yielded comparable accuracy. For
MEG RSA, weighing in empirical results and considerations of practica-
bility, and assuming there are no a priori constraints on the choice of a
dissimilarity metric, we recommend the cross-validated Euclidean dis-
tance as a default choice, which provides a gradual, unbiased and yet
reliable dissimilarity measure. Moreover, in comparison to the Pearson
distance, the Euclidean distance is much less affected by condition-
nonspecific signals common to different conditions and does not suffer
from instability in cross-validated processing schemes. Nevertheless,
when condition-nonspecific signals are not problematic or when the use
of within-class correction is feasible, the Pearson distance is likewise a
reliable and recommended choice for MEG RSA. If classification-based
RSA is desired, we recommend DV-weighting of correct and incorrect
predictions, which led to considerable boosts for the pattern reliability of
RDMs.
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