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It is well-established that increased sensory uncertainty impairs perceptual decision-making and leads to degraded
neural stimulus representations. Recently, we also showed that providing unreliable feedback to choices leads to
changes in perceptual decision-making similar to those of increased stimulus noise: A deterioration in objective
task performance, a decrease in subjective confidence and a lower reliance on sensory information for perceptual
inference. To investigate the neural basis of such feedback-based changes in perceptual decision-making, in the
present study, two groups of healthy human participants (n ¼ 15 each) performed a challenging visual orientation
discrimination task while undergoing functional magnetic resonance imaging (fMRI). Critically, one group
received reliable feedback regarding their task performance in an intervention phase, whereas the other group
correspondingly received unreliable feedback – thereby keeping stimulus information constant. The effects of
feedback reliability on performance and stimulus representation in the primary visual cortex (V1) were studied by
comparing the pre- and post-intervention test phases between the groups. Compared to participants who received
reliable feedback, those receiving unreliable feedback showed a decline in task performance that was paralleled
by reduced distinctness of fMRI response patterns in V1. These results show that environmental uncertainty can
affect perceptual inference at the earliest cortical processing stages.
1. Introduction

Bayesian models of brain function frame perception as an inferential
process, whereby an internal model of the world is used to infer the most
probable causes of the sensory data (Friston, 2005; O’Reilly et al., 2012).
For such perceptual inference to be adaptive, the uncertainty of sensory
data must be taken into account, whereby uncertain sensory information
should be given less weight in perceptual inference (Knill and Pouget,
2004; Adams et al., 2013). In experimental studies, uncertainty of the
sensory information is typically manipulated by adding varying levels of
noise, which has been shown to result in less informative neural stimulus
representations in sensory cortical areas (Hebart et al., 2012; Ludwig
et al., 2016; Darcy et al., 2019). In addition to such stimulus-based sen-
sory uncertainty, the weighting of sensory information in perceptual
inference also depends on stimulus-independent factors. For instance, it
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is well-established that expectations about upcoming stimuli can reduce
the relative weight given to the sensory input (Sterzer et al., 2008;
Summerfield et al., 2008; Series and Seitz, 2013). Recently, we showed
that providing unreliable feedback to perceptual decisions likewise leads
to a down-weighting of sensory information, paralleled by an
up-weighting of prior beliefs (Varrier et al., 2019). This distortion of
perceptual inference was also reflected in a deterioration of objective
task performance similar to previous work (Herzog and Fahle, 1997,
1999) and a decrease in the subjective confidence about perceptual de-
cisions, just as observed with increases of stimulus-based sensory un-
certainty (Mamassian, 2016). Computational modelling further showed
that these behavioural effects were well-explained by a model in which
unreliable feedback altered the likelihood distributions of the observer,
in turn leading to a down-weighting of sensory information (Varrier
et al., 2019).
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The present study aimed at identifying the neural basis of such
feedback-induced changes in perceptual inference. We used functional
magnetic resonance imaging (fMRI) to investigate whether the previ-
ously reported deterioration of perceptual task performance under un-
reliable feedback is related to altered neural stimulus representations in
sensory cortical areas, similar to those observed in relation to stimulus-
based sensory uncertainty. Based on previous fMRI studies showing
successful decoding of visual grating orientations from activation pat-
terns in primary visual cortex (V1) (Kamitani and Tong, 2005; Haynes
and Rees, 2005; Kok et al., 2012), we employed an orientation discrim-
ination task and examined the distinctness of V1 activation patterns
(Allefeld and Haynes, 2014) in relation to different stimulus orientations
(Fig. 1). The primary visual cortex or V1 is most sensitive to the low-level
properties such as contrasts and spatial frequency (Boynton et al., 1999;
Avidan et al., 2002; Tong et al., 2012) that are critical to the orientated
gratings used in this experiment, and hence our hypothesis was tested in
V1, where the effects on sensory representations were expected to be
maximal. The participants’ task was to discriminate between clockwise
(CW) and counter-clockwise (CCW) deviations of each presented grating
from an implicit diagonal. Task difficulty was individually adjusted
through a staircase procedure for each participant, and the
stimulus-response mapping was randomised using response cues. The
main experiment comprised a pre-intervention test phase, a feedback
intervention phase and a post-intervention test phase. Critically, the same
orientations were presented in all three phases of the experiment, so that
any observed changes in behavioural performance or neural pattern
representations were independent of physical stimulus properties. Thirty
participants were randomly assigned to one of two experimental groups
that differed only with respect to the intervention phase: In one group,
trial-wise feedback on task performance in this phase was randomised
and therefore unreliable, while in the other group feedback was always
correct and therefore reliable. The effects of unreliable vs. reliable
feedback on task performance and V1 pattern distinctness were assessed
by comparing changes from pre-to post-intervention test runs between
the two groups.
Fig. 1. (a) Design of the main experiment. (b) Sinusoidal grating stimuli of the ori
implicit diagonals at 135� and 45�. Reference lines are shown in red for illustrative p
illustration. (c) Two types of response mappings assigned CCW (CW) responses either
of trials in (d) test runs and (e) intervention runs. The response cues are enlar
response window.
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2. Materials and Methods

2.1. Participants

The study was approved by the ethics committee at Charit�e - Uni-
versit€atsmedizin Berlin, and informed consents were collected in writing
from all participants. Participants were students from Humboldt Uni-
versity and Charit�e – Universit€atsmedizin Berlin. Thirty-two healthy
participants took part in the experiment (18–35 years, mean age ¼ 24.9,
13 female). Of these, two participants were excluded from the experi-
ment before the intervention runs due to chance-level performance in
multiple runs in the pre-intervention phase. FMRI data from an addi-
tional participant in the reliable feedback group were discarded due to
excessive head motion during the post-intervention runs. Further, fMRI
data of two of the eight runs in the post-intervention phase of eight
participants (four each from the reliable and unreliable feedback groups)
were lost due to an error in the scanner sequence. In these participants,
the corresponding two runs from the pre-intervention runs were likewise
excluded for fMRI data analysis so as to make the pre- and post-
intervention data comparable in terms of statistical power for the
multivariate analyses.

2.2. General design

To study effects of feedback, participants were divided into two
groups which received either reliable (n ¼ 15) or unreliable (n ¼ 15)
feedback during a challenging orientation discrimination task. To mea-
sure neural responses during stimulus presentation, participants under-
went fMRI scanning. Each session consisted of task training outside the
scanner, threshold estimation, the main experiment and the functional
localiser. The main experiment consisted of three phases: (1) a pre-
intervention test phase without feedback, (2) an intervention phase
with either reliable or unreliable feedback and (3) a post-intervention
test phase without feedback (Fig. 1a). For the three phases of the main
experiment and the functional localiser which followed it, stimuli were
entation discrimination task. There were two pairs of stimuli corresponding to
urposes. The depicted orientation deviations from diagonals are exaggerated for
to the left (right) button or the right (left) button of a response box. Time courses
ged in (d) and (e) for better visibility. ISI ¼ inter-stimulus interval, RW ¼
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presented at the threshold estimated in the previous step. Feedback-
induced changes in behavioural and neural responses were studied by
comparing pre- and post-intervention phases in which the visual stimu-
lation remained the same.

2.3. Stimuli

Stimulus presentation was implemented using PsychToolbox 3.0.11
(psychtoolbox.org) for Matlab (MathWorks Inc.). Visual stimuli were
presented on a monitor (resolution: 1024 � 768 pixels) and projected
using an oblique mirror into the eyes of participants lying in a supine
position (total distance 154 cm). The stimuli were high-contrast annular
sinusoidal gratings (inner radius ¼ 1.32�, outer radius ¼ 6.69�, spatial
frequency ¼ 1.29cpd) with luminance ranging from 25% to 75% of the
maximum luminance of the screen. To reduce visual responses to the
inner and outer edges of the annuli, these edges were blurred using cir-
cular Gaussian functions centred at the inner (1.38�) and outer (6.64�)
edges such that the contrast gradually faded until it matched the gray-
scale background (standard deviation σ ¼ 0.44�). This procedure
rendered high contrast sinusoidal gratings with soft edges (see Fig. 1b).
Image properties other than orientation - such as contrast, spatial fre-
quency and size were identical for all participants and across the whole
experiment. To reduce neural adaptation and to avoid “point-of-refer-
ence” strategies by the participants, Gabor patches were presented with
variable phase shifts in different trials, randomly drawn from 16 equally
spaced shifts between 0 and 2π. Grating orientations deviated CW or
CCW from the diagonal references (45� or 135�) by an angle defined
individually for each participant in the threshold estimation step prior to
the main experiment (Fig. 1b).

2.4. Responses

In order to orthogonalise stimuli and responses, so as to prevent
motor planning during stimulus presentation, participants were informed
of the stimulus-response mapping (i.e., which button to press for
perceived CCW/CW orientations) only after the stimulus disappeared
(Kahnt et al., 2011; Hebart et al., 2012). Response cues were presented
for a time window of 1s, during which participants were asked to respond
(Fig. 1d–e). The cues were small circles with arrows indicating the
response mapping (CCW/CW) and were presented to the left and right of
the fixation dot with the inner arcs at 0.48� (visual angle). There were
two pairs of response cues corresponding to stimuli with 45� and 135�

references, and these could be presented in two sequences (left-right or
right-left). All possible presentation sequences of the response cues are
illustrated in Fig. 1c.

2.5. Feedback

Trial-by-trial feedback was delivered by means of auditory tones after
each response using speakers (Fig. 1e). Before the main experiment,
participants familiarised themselves with the tones and their associated
meaning during training runs outside the scanner. Feedback tones were
audible above the scanner noise, confirmed by asking participants during
the scans and in the post-experimental debriefing. The tones were posi-
tive, negative or neutral, depending on whether the response was correct,
incorrect or missed, respectively. Participants in the unreliable feedback
group received pseudo-randomised feedback in the intervention runs,
such that in half of the trials, the feedback delivered was faulty (i.e.,
positive tones after incorrect button presses and negative tones after
correct button presses). Participants in the reliable feedback group only
received valid feedback.

2.6. Task

On each trial, one of the four stimuli – gratings rotated CW or CCW
from an implicit diagonal (45� or 135�, see Fig. 1b) – could be presented,
3

and the participants’ task was to report their perceived orientation of the
grating as either CCW- or CW-rotated from an implicit diagonal refer-
ence. Participants were trained to identify the relevant diagonal for each
type of stimulus, which was in the same quadrant as the presented
stimulus (for example, if the presented stimulus had an orientation of
60�, the correct percept would be that it was counter-clockwise, since the
implicit diagonal in that quadrant, i.e., the 45� diagonal, was to be used as
the reference).

2.7. Trials

The time course of test and intervention trials are shown in Fig. 1d–e.
A trial started with the presentation of the fixation dot (radius 0.1� visual
angle) for 2�1s, followed by the presentation of the visual stimulus for
0.2s, which was followed by fixation for 2�1s. Next, the response win-
dow was presented for 1s, during which the response mapping was
indicated using the response cues, and responses were indicated by
pressing one of two buttons of an fMRI-compatible button box. In the
intervention runs alone, following the response, there was another fixa-
tion window (2�1s), following which the auditory feedback was deliv-
ered (0.75s). On each trial, the stimulus orientation was one of four types
(CCW/CW tilted with respect to the 45� or the 135� diagonal, see
Fig. 1b). Stimuli were presented in a pseudo-random fashion across trials
as determined prior to each test or intervention phase such that all
stimuli were presented an equal number of times within each run.

2.8. Experimental schedule

At the beginning of the experiment and outside of the scanner, par-
ticipants were trained in the orientation discrimination task using supra-
threshold versions of the gratings (20 min). Once inside the scanner,
individual orientation discrimination thresholds for the main experiment
were determined using a staircase procedure (10 min). 100% valid
feedback was delivered both in the training and the threshold estimation
steps to facilitate learning of the task and the response mapping. The
main experiment consisted of 24 runs (overall 85 min) and was followed
by a short functional localiser task (6 min). At the end of the experiment,
participants were debriefed. The three parts are explained in more detail
below.

2.8.1. Training
Participants performed training runs in a testing room outside the

scanner. The first run consisted of supra-threshold stimuli and the par-
ticipants manually navigated through each stimulus and response screen
at their own pace. The second run consisted likewise of supra-threshold
stimuli, but trial timings corresponded to those of the main experiment
(time course shown in Fig. 1e). If necessary, the second run was repeated
until the participant could make responses in the given time and got at
least 80% correct responses.

2.8.2. Staircase procedure
Inside the scanner, participants performed a staircase task to set the

deviation of stimuli from the diagonal references at which they could
discriminate between orientations with moderate difficulty. To this end,
we used two two-down, one-up staircases with equal step-sizes up and
down which arrived at an 80% performance threshold. The first phase of
the staircase procedure determined the approximate signal threshold and
had larger step-sizes (angular deviations from the two diagonals were
multiplied by the factors 10�0.03 and 100.03 to decrease or increase
thresholds, respectively). The second phase started at the threshold
estimated by the first staircase and used a fixed step size of 0.3�, both for
an increase and for a decrease in deviations from the diagonal. Each
staircase stopped when a certain number of reversals (six reversals for
phase one, ten reversals for phase two) or 80 trials were reached.
Thresholds were estimated by averaging the last four and six reversal
points in the staircase phases one and two, respectively.

http://psychtoolbox.org
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2.8.3. Main experiment
The main experiment consisted of 24 runs, split into three parts

(Fig. 1a): Runs 1–8 were pre-intervention test runs (without feedback),
runs 9–16 were intervention runs (with feedback) and runs 17–24 were
post-intervention test runs (without feedback). Each run consisted of 32
trials, in which each of the four stimulus conditions (CCW/CW deviations
from the 45� and 135� diagonal references) was shown eight times. In the
intervention runs, half of the participants received reliable and the other
half received unreliable feedback. The pre- and post-intervention test
runs were identical in structure, and their purpose was to measure
changes induced during the feedback intervention.

2.8.4. Functional localiser
Lastly, a functional localiser was run in which the four stimulus

conditions of the main experiment were presented along with a fixation-
only baseline condition. The five conditions were shown in blocks of 12-s
duration and were repeated six times in a pseudo-random order. During
the 12-s presentations of the four stimuli, all 16 phase shifts were shown
in a random order at a rate of 3.33Hz. To ensure that participants fixated
during the functional localiser run, a central fixation dot was present in
all conditions and changed its colour to red briefly at random (0.3s), and
participants had to press the left response button to indicate whenever
this event occurred.

2.8.5. Debriefing
At the end of the experiment, all participants were given question-

naires to probe their awareness of having received unreliable feedback
and motivation to do the task. To understand participants’ awareness of
feedback manipulation, they rated their percentage reliability on feed-
back, the degree to which they suspected feedback manipulation and the
intervention run number at which their trust in feedback changed. Par-
ticipants also rated their motivation to do the task in each phase of the
experiment as a percentage value. These questions are quoted verbatim
in the Supplementary Methods.

2.9. Eye-tracking

To ensure fixation, an MRI-compatible video-based eye-tracker
(iView XTM MRI 50Hz, SensoMotoric Instruments, Teltow, Germany)
was used to monitor participants’ gaze position throughout the experi-
ment. Eye-tracking data could not be collected from two participants due
to difficulties in calibration or in the detection of pupil and corneal reflex
by the camera. In all other participants, partial or full data were collected
and pre-processed in the following steps: (1) removal of invalid data
points, (2) cubic-spline interpolation of missing data points when there
was fewer than eight missing data points (160 ms), (3) removal of linear
trends and (4) high-pass filtering of data by computing running averages
across five consecutive points (100 ms). After pre-processing, data cor-
responding to the stimulus presentation windows (200 ms) were
extracted. Next, participants with a high proportion of missing data
(defined as (1) more than 70% invalid data points overall or within the
stimulus presentation windows of the pre- or the post-intervention pha-
ses, or (2) no data at all from more than six runs within either the pre- or
post-intervention phases) were excluded.

2.10. FMRI data acquisition and processing

2.10.1. Data acquisition
Functional brain images were acquired at a 3T Siemens Trio (Erlan-

gen, Germany) scanner using a gradient echo-planar imaging sequence
and a 12-channel head coil. Each run in the pre- and post-intervention
phases consisted of 90 T2*-weighted whole-brain volumes each, and
the functional localiser run consisted of 180 whole-brain volumes. Other
parameters remained the same during the main experiment and the
localiser (TR ¼ 2s, TE ¼ 30 ms, flip angle ¼ 78�, 33 slices, descending
acquisition, 3 mm isotropic resolution, 0.7 mm gap between slices). In
4

addition, high-resolution structural T1-weighted images were acquired
using the MPRAGE sequence (TR ¼ 1.9s, TE ¼ 2.52 ms, flip angle ¼ 9�,
192 slices, 1 mm isotropic resolution).

2.10.2. FMRI data processing
The functional images were corrected for slice acquisition delays and

translational/rotational motion using the MATLAB-based Statistical
Parametric Mapping Toolbox (SPM12, www.fil.ion.ucl.ac.uk/spm). Next,
the functional images and the probabilistic V1 mask from the SPM-based
Anatomy Toolbox (Eickhoff et al., 2005) were aligned in the following
steps: (1) the V1 mask and the Colin27 single-subject brain template
(which was in alignment with the anatomical V1 mask) were mapped to
subject space, and (2) functional images in their native space were
co-registered and resliced to match Colin27 (and consequently the V1
mask). Following co-registration, the functional images were smoothed
with a 3 mm (FWHM) Gaussian kernel (Op de Beeck, 2010; Misaki et al.,
2013; Gardumi et al., 2016; Hendriks et al., 2017). Next, three separate
general linear models (GLMs) were defined for each participant: One
GLM for the pre-intervention runs, one for the post-intervention runs,
and one for the functional localiser runs. In each GLM, the four stimuli
were included as separate regressors, and a fifth regressor encoded the
response windows with button presses. These regressors were then
convolved with the canonical haemodynamic response function as
implemented in SPM12. In addition, the six translation and rotation
parameters obtained from the motion correction step were included in
each model as regressors of no interest. The GLMs from the pre- and
post-intervention runs were used to estimate pattern distinctness, and the
GLM from the functional localiser was used to create individual
participant-specific regions of interest (ROI) based on t-contrast maps of
voxels that responded to the visual stimuli irrespective of orientation and
the probabilistic V1 mask. Voxels within brain area V1 were selected for
the ROI if they (1) had a probability of greater than 50% of belonging to
V1 (referred to as area hOc1 in the SPM-based Anatomy Toolbox
(Eickhoff et al., 2005)) and (2) were significant at an uncorrected
t-contrast threshold of 0.05. This voxel selection process yielded ROIs
with comparable numbers of V1 voxels in both groups of participants
(unreliable feedback: 225.4 � 13.51, reliable feedback: 219.25 � 17.35
voxels; two-tailed, two-sample t-test: t(27) ¼ 0.28, p ¼ .78). All analyses
of pattern distinctness and average responses (see below) were based on
these ROIs.

2.10.3. Estimation of pattern distinctness
To estimate the distinctness of stimulus-evoked activation patterns in

V1, we used the cross-validated (CV)-MANOVA algorithm (Allefeld and
Haynes, 2014). CV-MANOVA performs a leave-one-run-out cross--
validation to compute an unbiased estimate for the distinctness of acti-
vation patterns. When used to compare two multivariate patterns like in
our study, this measure of pattern distinctness is analogous to the
Mahalanobis distance. Here the pattern distinctness thus corresponded to
the cross-validated Mahalanobis distance between Stimuli with the same
diagonal reference. By averaging across the distinctness estimates cor-
responding to the two stimulus pairs, we obtained a single estimate of
pattern distinctness for each participant and test phase
(pre-/post-intervention).

2.11. Statistical analyses

The key dependent variables to test our hypotheses about the effects
of unreliable feedback were (1) the orientation discrimination perfor-
mance within each test phase (pre-/post-intervention), quantified as the
mean percentage of correct responses averaged across all the test runs
within a phase, and (2) the distinctness of patterns in V1 computed for
each test phase as described in the previous section.

2 � 2 mixed-design ANOVAs were performed separately for task
performance and pattern distinctness. The analyses are called “mixed-
design”, because there were two factors in the analysis, one of which

http://www.fil.ion.ucl.ac.uk/spm


Fig. 2. Behavioural performance across groups (reliable/unreliable feedback)
and test phases (pre-/post-intervention). The bars show mean performances and
errorbars show standard errors of the means. The individual lines show subject-
wise estimates of task performance.
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was between-subject (feedback type: unreliable or reliable) and the
other within-subject (test phase: pre-/post-intervention) . The orienta-
tion discrimination threshold was used as a covariate of no interest.
Our critical prediction was a significant interaction between feedback
type and test phase. In case of significant interactions, post-hoc one-
sample t-tests (two-tailed) of changes in performance and pattern
distinctness were performed to further understand the nature of this
interaction. To determine the effect sizes of the behavioural and neural
changes, Cohen’s d was estimated separately for changes in perfor-
mance and pattern distinctness between the two groups (unreliable/
reliable feedback). These estimates were corrected for the small sample
size (Durlak, 2009).

Since we hypothesised that unreliable feedback impairs both task
performance and stimulus representations, we tested whether the
changes in performance (ΔPercent correct) and pattern distinctness (ΔPattern

distinctness) correlated with each other, using the Robust Correlation
Toolbox (Pernet et al., 2013). Please note that an analogous analysis was
not performed for the reliable feedback group, because the aim of the
correlation analysis was to specifically test for a systematic change in the
variances induced by unreliable feedback and not the neural correlates of
perceptual learning (which we could in principle have probed by corre-
lating behaviour with neural signals in the reliable feedback group). In
addition to our hypothesis-driven ROI analysis of V1, an exploratory
whole-brain searchlight was also performed post-hoc to study the
changes in information representation in other brain areas. The details of
this analysis are given in the Supplementary Information.

To study changes in overall arousal and attention as a result of un-
reliable feedback, the changes in overall neural activity in the selected
voxels in V1 was analysed post-hoc using a 2 � 2 mixed-design ANOVA
with the same factors and covariate as used to study the changes in
pattern distinctness. The mean beta estimates for responses to all stimuli
(irrespective of orientation) were computed independently for both test
phases (pre/post-intervention) by averaging across all voxels within the
individually defined V1 ROIs (see above), and this was used as the
dependent variable.

Lastly, we performed post-hoc control analyses to understand if non-
perceptual mechanisms could have influenced the changes in perfor-
mance or pattern distinctness. First of all, the eye-tracking data were
analysed to test whether fixation changed as a result of unreliable feed-
back and whether stimulus orientations (CW vs. CCW) could be decoded
from the eye-tracking data (Thielen et al., 2019). Next, the subjective
responses to the debriefing questionnaire were analysed to (1) probe the
degree of awareness of feedback manipulation and its influence on the
observed effects in the unreliable feedback group and (2) investigate if
changes in motivation ratings paralleled the main results on the behav-
ioural/neuroimaging data. The performance in the colour-change
detection task performed during the functional localiser run was also
compared between the two groups. The details of these analyses are
described in the Supplementary Information section.

Finally, we performed two additional analyses to further examine the
role of potential confounds: (1) To examine the strength of the absent
interaction effects and correlations, we performed Bayesian analyses
using the MATLAB package bayesFactor (Krekelberg, 2019); and (2) to
understand their influence on the main behavioural and neural results,
we repeated the corresponding mixed-design ANOVAs with each of the
potential confounds (e.g. awareness of feedback manipulation, change in
fixation etc.) as an additional covariate.

2.12. Data availability

Whole-brain pattern univariate and multivariate contrast maps (used
for the searchlight and mean activity analyses) have been uploaded to
NeuroVault (https://identifiers.org/neurovault.collection:6040). Since
CV-MANOVA gives out only single-value estimates for the ROI analysis
(V1) of pattern distinctness, we have provided the pattern distinctness
estimates for each test phase. These, together with the behavioural data
5

and the codes used for data analysis have been uploaded to GitHub
(https://github.com/rvarrier/fmri_unreliablefb).

3. Results

In this study, we investigated the effects of unreliable feedback by
delivering it in a dedicated intervention phaseand subsequently measuring
its effects in an ensuing test phase in which no feedback was delivered.
We hypothesised that unreliable feedback would lead to decreases in task
performance and the precision of stimulus representation in the visual
cortex. To test this, the percentage of correct responses and neural
pattern distinctness in V1 were compared between the pre- and post-
intervention test phases, and between participant groups receiving un-
reliable and reliable feedback. Participants performed an orientation
discrimination task where stimuli deviated from diagonal references at
individually determined thresholds. On average, these thresholds were
comparable between the two groups (unreliable: M ¼ 7.85�, SE ¼ 1.53�,
reliable: M ¼ 8.08�, SE ¼ 0.89�; two-tailed, two-sample t-test: t(28) ¼
0.13, p ¼ .9).

3.1. Unreliable feedback impairs task performance

Behaviourally, unreliable feedback during the intervention phase led
to a significant decline in discrimination performance, as shown in a two-
way mixed ANOVA, where the between-subject factor feedback type
(unreliable vs. reliable) and the within-subject factor test phase (pre-vs.
post-intervention) showed a significant interaction effect (F(1,27) ¼
7.26, p ¼ .01; ηp2 ¼ 0.21, Fig. 2). Post-hoc two-tailed one-sample t-tests
showed a significant decrease in performance after unreliable feedback
(M¼�6.88, SE¼ 2.60, t(14)¼�2.64, p¼ .02) but not reliable feedback
(M¼ 3.49, SE¼ 2.73, t(14)¼ 1.28, p¼ .22). The effect size (Cohen’s d) of
the change in performance between the two groups was 0.94.

3.2. Unreliable feedback deteriorates neural stimulus representations in V1

Neural effects of unreliable feedback were assessed by estimating the
distinctness of activation patterns in stimulus-responsive parts of V1
evoked by CW- vs. CCW-rotated gratings based on fMRI data from 29
participants (unreliable feedback: n ¼ 15, reliable feedback n ¼ 14; see
Materials and Methods). In line with our hypothesis, and in striking
analogy to the behavioural results, we found a significant interaction of
feedback type and test phase (F(1,26) ¼ 5.98, p ¼ .02, ηp2 ¼ 0.19; Fig. 3).
Again, post-hoc one-sample t-tests (two-tailed) showed that there was a

https://identifiers.org/neurovault.collection:6040
https://github.com/rvarrier/fmri_unreliablefb


Fig. 3. Neural pattern distinctness in V1 plotted across groups (reliable/unre-
liable feedback) and test phases (pre-/post-intervention). The bars show the
mean pattern distinctness and errorbars show standard errors of the means. The
individual lines show subject-wise estimates of pattern distinctness.
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significant decrease in pattern distinctness after unreliable feedback (M
¼ �0.04, SE ¼ 0.02, t(14) ¼ �2.61, p ¼ .02), but not after reliable
feedback (M ¼ 0.02, SE ¼ 0.02, t(13) ¼ 0.98, p ¼ .35). The effect size of
the change in pattern distinctness between the two groups was 0.84.

Since the pattern distinctness at each test phase (pre-/post-interven-
tion) was averaged between the two stimulus pairs (i.e., pair 1: CW/CCW
deviations from the 45� diagonal and pair 2: CW/CCW deviations from
the 135� diagonal, see Fig. 1b), we tested for differences in the observed
changes (post–pre) in pattern distinctness between them to investigate
the possibility that the observed effects of feedback manipulation might
have been driven by one stimulus pair alone. The comparison revealed
that these pre- to post-intervention changes were comparable across the
stimulus pairs for both the unreliable feedback group (paired t-test: t(28)
¼ 0.84, p ¼ 0.41; 45� reference: M ¼ �0.05, SE ¼ 0.01; 135� reference:
M ¼ �0.03, SE ¼ 0.02) and the reliable feedback group (paired t-test:
t(26) ¼ 1.21, p ¼ 0.24; 45� reference: M ¼ �0.003, SE ¼ 0.03; 135�

reference: M ¼ 0.04, SE ¼ 0.02).
Next, to test whether the deterioration of neural pattern distinctness

in V1 after unreliable feedback was related to the decrease in behavioural
performance, we correlated the changes (post -intervention � pre-
Fig. 4. The relationship between changes in behavioural performance (ΔPercent

correct) and the precision of multivariate representations in V1 (ΔPattern distinctness)
for the unreliable feedback group. Triangles represent individual participants
and the line shows the linear fit.
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intervention) in performance with analogous changes in pattern
distinctness in the unreliable feedback group (Fig. 4). The data were
heteroscedastic (95% CI of differences between conditional variances
from 600 iterations was [–93.65, �4.88]), making it possible that the
observed correlations could be explained by the differences in variances.
Hence, based on the recommendations of the Robust Correlation Toolbox
(Pernet et al., 2013), we used a (1) a correlation estimate that is robust to
multivariate outliers, i.e., the skipped Pearson’s correlation and (2) a
measure of significance that was robust to heteroscedasticity, i.e., the
95% CI obtained from bootstrapping the data (n ¼ 1000).

This analysis revealed that there were no outliers and that the Pear-
son’s correlation coefficient of 0.65 was associated with the 95% CI [0.31
0.86] which was well above zero and a p-value of .008 in the traditional
Pearson correlation (in the absence of outliers, this analysis too yielded a
correlation coefficient of 0.65) – indicating a clear positive correlation
between the changes in performance and pattern distinctness following
unreliable feedback interventions.

3.3. Unreliable feedback does not change overall neural activity

To understand if the observed changes in pattern distinctness is par-
alleled by a change in overall activity within the stimulus-responsive V1
voxels, the mean beta value was computed across all four stimulus types
separately for the pre- and post-intervention phases of both groups. There
was no detectable feedback-related change in the overall activity across
these voxels, as shown by the absence of a significant interaction between
feedback type and test phase (F(1,26) ¼ 0.26, p ¼ .62, ηp2 ¼ 0.01; Fig. 5).
The main effects of feedback type (F(1,26)¼ 0.85, p¼ .36, ηp2¼ 0.03) and
test phase (F(1,26) ¼ 0.39, p ¼ .54, ηp2 ¼ 0.02) did not reach significance.
To further corroborate the absence of an interaction effect, we performed
a Bayesian two-sample t-test comparing changes (ΔOverallActivity) between
the two groups. The test showed anecdotal evidence for the absence of a
group difference (BF10 ¼ 0.39, t(27) ¼ .52, p ¼ .61, 95% CI ¼ [–35.54,
59.49]; default Cauchy prior provided by the package bayesFactor).

Further, we tested whether the overall activity could explain the
changes in pattern distinctness reported in Section 3.2. by repeating the
ANOVA with the difference in overall activity (ΔOverallActivity) as an
additional covariate. The interaction between test phase and feedback
type was still significant (F(1,25)¼ 6.96, p¼ .01, ηp2 ¼ 0.22). Further, the
interaction between test phase (pre-/post-intervention) and the addi-
tional covariate was not significant (F(1,25) ¼ 2.22, p ¼ .15, ηp2 ¼ 0.08).
Thus, the changes in neural pattern distinctness cannot be explained by
Fig. 5. Overall activity in stimulus-responsive V1 voxels plotted across groups
(reliable/unreliable feedback) and test phases (pre-/post-intervention). The bars
show the values averaged across participants, and errorbars show standard er-
rors of the mean. Individual lines show subject-wise estimates.
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changes in overall activity in the corresponding voxels.

3.4. Searchlight analysis shows a decrease in pattern distinctness in
extrastriate visual areas

An exploratory whole-brain analysis was performed using the CV-
MANOVA algorithm to yield searchlight maps for each test phase and
participant. The changes in pattern distinctness in these maps (pre–post)
were analysed at the group-level using a two-sample t-test. The results
were then corrected for task-relevant voxels in the brain, and this
revealed a cluster with a significant peak in the right visual association
cortex (Fig. S1). No other significant peaks were detected. Details of this
analysis are reported in the Supplementary Information.

3.5. Control analyses

We performed several control analyses to test whether non-perceptual
factors might have influenced the observed behavioural and neural ef-
fects of unreliable feedback (see Supplementary Information). In brief,
these control analyses yielded no evidence for a significant contribution
of such non-perceptual factors. First, the analyses of the eye-tracking data
revealed that fixation accuracy was comparable between pre-and post-
intervention phases, and that the decodability of stimulus orientations
(CW vs. CCW) from eye movements was at chance and did not change
over time differently in the unreliable feedback group (Fig. S2). Next, the
responses on the perceived reliability of feedback and the awareness of
feedback manipulation were compared between groups. While there
were group differences with respect to both the perceived reliability of
feedback and the awareness of feedback manipulation, there was no
detectable association between these ratings and the changes in perfor-
mance and pattern distinctness in the unreliable feedback group
(Fig. S3). Further, changes in motivation and the performance in the
colour-change task were also unlikely to have been different between the
two feedback groups (Figs. S4 and S5), making it highly unlikely that the
feedback-related performance deterioration in the main task was due to a
general decrease in motivation to do any task. Finally, we repeated the
mixed ANOVA analyses of the performance and pattern distinctness data
(described in Sections 3.1 and 3.2 ) with these potential confounds as
additional covariates. Inclusion of eye-movement data, feedback
awareness, or motivation rating as covariates did not abolish the signif-
icant interaction between feedback type and test phase for the behav-
ioural or the neural data. Solely the inclusion of feedback reliability
ratings rendered the interaction effect for performance insignificant,
while the interaction effect for neural pattern distinctness remained
significant. These results further show that the behavioural and neural
effects of unreliable feedback were unlikely to be due to non-perceptual
factors. More details on the control analyses are described in the Sup-
plementary Information sub-section “Control analyses”.

4. Discussion

The current study used fMRI to investigate how unreliable feedback
on perceptual task performance affects neural stimulus processing in
early visual cortex. We predicted that the delivery of random unreliable
feedback would be associated with a deterioration of perceptual perfor-
mance, as previously shown (Herzog and Fahle, 1997; Vuvan et al., 2018;
Varrier et al., 2019), and that this effect might be paralleled by a
degradation of stimulus representations in V1. In line with our hypoth-
eses, we observed that following the delivery of unreliable feedback, both
task performance and neural pattern distinctness in V1 deteriorated,
compared to a control group that received reliable feedback. Moreover,
the changes in performance and pattern representation in the unreliable
feedback group correlated with each other.

Together, these changes at the behavioural and neural level are thus
comparable to a scenario in which stimulus uncertainty itself was
manipulated, even though stimuli were kept constant throughout the
7

experiment. This implies a mechanism by which the brain modulates
sensory representations based on stimulus-independent factors. Indeed,
such a mechanism is well-established for the induction of prior expec-
tations about stimuli, including changes of neural stimulus representa-
tions in V1 (Kok et al., 2012, 2013). From a Bayesian perspective, this is
compatible with an observer that integrates prior information and cur-
rent sensory evidence, and weights each source of information based on
its estimated reliability (precision). If expectations are strong or sensory
information is deemed unreliable, sensory information is
down-weighted.

Here we suggest that providing unreliable feedback to perceptual
choices changes the observer’s belief about the reliability of sensory in-
formation, or hyperpriors (Friston et al., 2013), and thus leads to a
down-weighting of sensory signals. This account would be well in line
with our current and previous findings: (1) down-weighted sensory
signal would lead to impaired task performance and reduced subjective
confidence (Varrier et al., 2019) since the (task-relevant) sensory signals
arriving at decisional and metacognitive stages are more noisy; (2) if
feedback indeed affects the relative precision-weighting of sensory sig-
nals and prior information, a shift towards prior information would occur
for unreliable feedback, as reported in Varrier et al., (2019); and (3) this
relative shift away from sensory information would show a similar neural
signature as reported for induced stimulus expectations. Yet, while we
consider this a plausible interpretation of the observed behavioural and
neural effects, it should be noted, that unlike our previous work (Varrier
et al., 2019), the current study did not induce prior beliefs. We thus do
not provide direct evidence for a shift of perceptual inference away from
sensory evidence and towards prior beliefs.

As an alternative account, it is also conceivable that unreliable
feedback might have reduced overall attention to the visual stimuli or
motivation to perform the task, which could also explain the lower pre-
cision of stimulus representations in early visual cortex. However, the
analysis of the mean activity, an indicator of attention (Kastner et al.,
1998, 1999), computed across stimulus-responsive V1 voxels, showed
that the pre-to post-intervention changes in performance and neural
pattern distinctness were not related to overall neural stimulus responses.
This indicates that our results are unlikely to be due to changes in
attention. Similarly, further control analyses rendered confounding ef-
fects from changes in eye movements, subjectively experienced feedback
reliability, awareness of the feedback manipulation and motivation un-
likely. Thus, together with the correlation observed between the changes
in performance and pattern distinctness in the unreliable feedback group,
the decrease in the precision of stimulus representations at an early stage
of cortical processing remains as a likely explanation of the decline in
task performance after unreliable feedback. However, we also note that
while the mixed ANOVAs revealed no significant effects of potential
confounds, most of the Bayesian analyses showed only anecdotal evi-
dence for the null hypothesis.

In studying the effects of unreliable feedback, our key assumptionwas
that observers would attempt to infer and resolve the causes of the
mismatch between their perceptual reports and external feedback. Hence
it is indeed possible that participants could have also attributed these
mismatches to a decrease in the reliability of response cues or feedback
cues. However, by not informing participants of the response mapping
(i.e., which button to press for which percept) until after the stimulus
disappeared, we eliminate the role of response uncertainty in our mea-
surement of representational precision (pattern distinctness) during
stimulus presentation. Likewise, since feedback was absent altogether in
the pre- and post-intervention test phases (where pattern distinctness was
measured), this could not have influenced neural representations during
stimulus presentation in the test phases either. In line with this, our re-
sults demonstrated that sensory processing was affected, as indicated by
both the decrease in pattern distinctness in V1 and its correlation with
corresponding changes in performance. The exploratory searchlight
analysis also showed that stimulus representations in visual but not high-
level executive brain areas changed as a result of unreliable feedback.
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Nevertheless, in principle, there could still be a component of decision
uncertainty that could have influenced task performance (i.e., “should I
really press the button for CCW-tilt, when I saw CCW-tilt?”) that may
have gone undetected in the current experiment. Future studies can
eliminate the decision noise component during stimulus presentation by,
for instance, randomising the cognitive task itself across trials.

In the past, studies have shown that sampling efficiency improved
with training (Lu and Dosher, 2004; Kurki and Eckstein, 2014; Moerel
et al., 2016), and, since unreliable feedback has been associated with a
deterioration in task performance (Herzog and Fahle, 1997, 1999; Var-
rier et al., 2019), it is possible that unreliable feedback leads to a decrease
in sampling efficiency. However, unlike in the current study, these pre-
vious experiments (Lu and Dosher, 2004; Kurki and Eckstein, 2014;
Moerel et al., 2016) trained over several sessions and used noise-overlays
as a stimulus manipulation, and therefore proposed changes in stimulus
sub-sampling as a mechanism for changes in perceptual learning. While
we therefore consider a change in sampling efficiency less likely as a
mechanism in in our study, such an interpretation would not contradict
the notion of ‘sensory down-weighting’: A decrease in sampling effi-
ciency for relevant sensory features would in fact be entirely in line with
a mechanism by which the brain down-weights sensory channels that are
inconsistent with the feedback information.

An alternative explanation of our results could also be that unreliable
feedback hinders within-block learning that is often associated with such
tasks (Herzog and Fahle, 1997; Liu et al., 2010). While this is possible in
theory, we currently have no evidence to support this conjecture, since
there was no significant improvement in performance or stimulus rep-
resentations even in the reliable feedback group.

The exploratory whole-brain analysis revealed no change in stimulus
representations in non-visual brain areas, but showed a decrease in the
right extrastriate visual region. While this is different from our main ROI
analysis of V1, it should be kept in mind that in the ROI analysis, pattern
distinctness was determined based on voxels selected at the individual
level. In contrast, the searchlight analysis used a single searchlight radius
for all participants and was based on anatomically normalised functional
images. These methodological differences make the searchlight analysis
far less sensitive to the changes in the retinotopic stimulus representation
in V1. Importantly, the searchlight analysis did not show significant
changes in higher level brain areas (that were not sensitive to the phys-
ical properties of stimuli) as a result of unreliable feedback relative to
reliable feedback.

One of the limitations of the current study is the participants’
awareness of the feedback manipulation. However, control analyses
showed that neither behavioural nor neural effects of unreliable feedback
correlated with the awareness of the feedback manipulation. Higher
awareness could have led to two processes and we do not find evidence
for either of them: First, such awareness would have led to an overall
reduced task motivation and attention and thereby decreasing task per-
formance. However, neither the mean activity in stimulus-responsive V1
voxels, an indicator of top-down attention (Kastner et al., 1998, 1999),
nor the subjective ratings of motivation showed evidence supporting a
modulation of feedback type. Second, participants could have started
ignoring feedback altogether when they noticed the feedback manipu-
lation, and as a result performance would not suffer. In this case, par-
ticipants who indicated higher awareness of feedback manipulation
would have a smaller performance deterioration than those who indi-
cated lower awareness of the manipulation. Yet, the control analysis
indicated that there was no correlation between the ratings of awareness
and the behavioural and neural changes in the unreliable feedback group.
Also, subjective reports on the awareness of feedback manipulation
provides only an imperfect control, since they are susceptible to partic-
ipants’ reporting bias – such as to indicate a higher awareness of feedback
manipulation on being specifically asked about it during debriefing due
to an “Aha!” effect. Hence, we recommend that future studies ensure
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better masking of the feedback manipulation, for instance by making the
task more difficult.

A second limitation is the sample size used in the current study, given
the between-group design. Since this study was novel in its design and
approach, a formal sample size calculation could not be performed, and
as a result, there is a risk of overestimation of the observed effect. The
performance changes are comparable to our previous behavioural study
using unreliable feedback (Varrier et al., 2019), which had a similar
experimental design but with a within-subject design and a few other
methodological differences. However, considering the novelty of the
study design, the current results should be treated as proof-of-concept.
Replication with larger sample sizes is therefore warranted.

According to predictive coding theories of hierarchical cortical pro-
cessing, bottom-up sensory signals transmitted from lower to higher
levels of the processing hierarchy are weighted by the precision of these
signals in superficial cortical layers (Adams et al., 2013). While the
precision, encoded by the post-synaptic gain of the neurons transmitting
the bottom-up signals, is thought to be under the influence of top-down
projections (Ryota et al., 2015), recent studies have shown evidence that
these precision-weighted prediction errors could be encoded in sensory
areas of the brain (Iglesias et al., 2013; Stefanics et al., 2019). We suggest
that our finding of reduced distinctness of fMRI signal patterns may be
due to a decrease in the precision-weighting of sensory information in
V1, most likely mediated by top-down signalling of learned beliefs
regarding the reliability of the sensory information.

5. Conclusion

The present study showed that the delivery of unreliable feedback
resulted in impaired task performance and stimulus representations in
early sensory areas of the brain. These changes could not be explained by
changes in attention, motivation or eye movements. Awareness of feed-
back manipulation could have influenced our results although a detect-
able effect was not present; however, future studies should be cautious
about this potential confound. Together with previous work, these results
suggest that unreliable feedback can change the beliefs about the un-
certainty of sensory information, entailing behavioural and neural effects
that are highly similar to those reported for increases of stimulus-based
uncertainty.
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