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Abstract

Research on metacognition—thinking about thinking—has grown rapidly and fostered our understanding of human cognition in
healthy individuals and clinical populations. Of central importance is the concept of metacognitive performance, which characterizes
the capacity of an individual to estimate and report the accuracy of primary (type 1) cognitive processes or actions ensuing from these
processes. Arguably one of the biggest challenges for measures of metacognitive performance is their dependency on objective type 1
performance, although more recent methods aim to address this issue. The present work scrutinizes the most popular metacognitive
performance measures in terms of two critical characteristics: independence of type 1 performance and test-retest reliability. Analyses
of data from the Confidence Database (total N=6912) indicate that no current metacognitive performance measure is independent of
type 1 performance. The shape of this dependency is largely reproduced by extending current models of metacognition with a source
of metacognitive noise. Moreover, the reliability of metacognitive performance measures is highly sensitive to the combination of type
1 performance and trial number. Importantly, trial numbers frequently employed in metacognition research are too low to achieve
an acceptable level of test-retest reliability. Among common task characteristics, simultaneous choice and confidence reports most
strongly improved reliability. Finally, general recommendations about design choices and analytical remedies for studies investigating
metacognitive performance are provided.

Keywords: metacognitionl; confidencel; decision makingl; metacognitive sensitivitl; test-retest reliability

Introduction
Being able to introspect about the correctness of thoughts and
actions comes with clear benefits both at an individual and a
group level. For instance, at an individual level, accurately judg-
ing confidence in one’s beliefs allows one to balance the costs
and benefits of possible actions associated with these beliefs
(Fleming et al. 2012). At a group level, communicating accurate
levels of certainty optimizes collaborative decision-making (Frith
2008; Bahrami et al. 2012).

Researchers have long aimed to develop measures that accu-
rately capture the performance in such metacognitive judge-
ments. One of the earliestmethods is based on the concept of ‘type
2’ receiver operating characteristic (ROC) curves (Clarke et al. 1959;
Pollack 1959). Whereas regular ROC curves contrast the ‘objective’
probabilities of false alarms and hits, type 2 ROC curves contrast
the ‘subjective’ probabilities of being correct between instances
in which those decisions are factually correct (‘type 2 hit’) and
incorrect (‘type 2 false alarm’). Thus, while the area under the
type 1 ROC curve provides a measure for type 1 sensitivity, the
area under the type 2 ROC curve (AUROC2) provides a measure of

‘metacognitive sensitivity’ (Hosseini and Ferrell 1982; Critchfield
1993; Galvin et al. 2003).

A key advantage of AUROC2 over more simple measures such
as the correlation between accuracy and confidence (cf. Nelson
1984) is that AUROC2 is insensitive to metacognitive biases, i.e.
whether an observer generally prefers lower or higher confidence
ratings. However, AUROC2—like correlation-based measures—is
dependent on type 1 performance. This can intuitively be under-

stood in terms of type 1 performance influencing the proportion

of trials in which an observer has to guess. As even a metacog-

nitively ideal observer cannot predict which decisions, among

guessing trials, will be correct, AUROC2 necessarily decreases

with an increasing proportion of guessing trials and thus decreas-

ing performance (for a mathematical treatment, see Galvin et al.

2003). Thus, AUROC2 cannot isolate metacognitive performance

from type 1 performance.
A solution to this issue was proposed by Maniscalco and Lau

(2012, 2014) through ameasure calledmeta-d′. The idea ofmeta-d′

is to express metacognitive sensitivity in terms of the type 1 sen-
sitivity that an ‘ideal’ metacognitive observer would need in order
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to achieve the observed type 2 hit and false alarm rates. Since
meta-d′ is expressed in units of d′, it can be directly compared to—
and normalized by—type 1 sensitivity. In this way, differences in
metacognitive performance that are expected on the basis of type
1 performance differences alone can bemathematically corrected
for. If the observer is indeed metacognitively optimal, meta-d′ =

d′ is expected, whereas values of meta-d′ below d′ indicate vary-
ing degrees of metacognitive suboptimality. As pointed out by
Maniscalco and Lau (2012), due to the ratio scaling properties of d′

measures, this normalization may be achieved either by subtrac-
tion (Mdiff =meta-d′ − d′) or division (Mratio =meta-d′/ d′). Fleming
and Lau coined the term ‘metacognitive efficiency’ for these two
measures, as they quantify how efficiently observers make use
of the available type 1 information for metacognitive judgements
(Fleming and Lau 2014).

Since their inception around 10years ago, Mdiff, and in partic-
ular Mratio, have grown in popularity and are now in widespread
use in the metacognition community. A frequent use case is
between-subject designs in which performance levels might dif-
fer between participants and/or groups and which thus explic-
itly require a measures invariant to type 1 performance (Baird
et al. 2014; Hauser et al. 2017; Sadeghi et al. 2017; Faivre et al.
2020; Hertz et al. 2020; Nicholson et al. 2020; Ordin et al. 2020;
Reyes et al. 2020). Other use cases are within-subject designs in
which metacognitive performance is compared between experi-
mental conditions (Maniscalco and Lau 2015; Odegaard et al. 2018;
Shekhar and Rahnev 2018; Filevich et al. 2020; Konishi et al. 2020;
Mei et al. 2020; Ordin and Polyanskaya 2020) or in which rela-
tionships between two domains (e.g. brain and behaviour) are
assessed (Baird et al. 2013, 2015; McCurdy et al. 2013; Fitzgerald
et al. 2017; Samaha and Postle 2017; Lee et al. 2018; Ye et al. 2019).
In both cases, difference in the underlying type 1 performance
would be a confounding variable. A particular focus has been the
question whether metacognitive performance is a trait-like con-
struct that generalizes across sensory modalities or domains (e.g.
memory and perception), with so far mixed results (Baird et al.
2013; McCurdy et al. 2013; Samaha and Postle 2017; Lee et al. 2018),
pointing also to a role of task design (Samaha and Postle 2017; Lee
et al. 2018).

Yet, despite the broad acceptance of metacognitive perfor-
mance measures based onmeta-d′, it is largely unknown whether
the claim of type 1 performance invariance holds in practise.
Indeed, a recent study demonstrated via simulation that type 1
performance invariance breaks down when assuming that confi-
dence ratings are influenced by additional sources of (metacog-
nitive) noise (Bang et al. 2019). Specifically, according to their
simulation, both Mratio and Mdiff increase with increasing levels of
sensory noise. To test this prediction, Bang and colleagues addi-
tionally performed a behavioural study in which sensory noise of
participants was decreased through training over multiple days
in a perceptual learning paradigm. Consistent with the model
prediction, metacognitive efficiency decreased over the course
of the experiment. Irrespective of this particular empirical find-
ing, it seems highly likely that confidence ratings are influenced
by additional sources of noise, both during the computation of
metacognitive estimates and during report.

A second requirement of quantitative psychological constructs
is a sufficient degree of test-retest reliability. All else equal,
two measurements of metacognitive performance should give
comparable results between a test and a retest session. Indeed,
measurement errors for metacognitive performance are a priori
expected to be rather high, as they are influenced by measure-
ment errors of both type 1 and type 2 performance. Moreover,

type 1 performance by itself is a notoriously noisy measure, as
it is derived from a binary variable (correct/incorrect).

The goal of the present work is to shed light on both issues,
type 1 performance independence and reliability (test-retest). My
approach was two-fold in both cases. In a first step, simulated
data were used to study the characteristics of metacognitive per-
formance measures under controlled settings. Second, the same
analysis used for simulation was applied to empirical data, mak-
ing use of the recently released Confidence Database (Rahnev et al.
2020), a continuously growing collaborative repository of confi-
dence datasets (145 at the time of accessing the database). This
database comprises a large number of modalities, paradigms and
various types of confidence reports and thus provides a powerful
dataset to robustly assess measures of metacognition.

Overall, two measures of metacognitive sensitivity (meta-d′

and AUROC2) were assessed and several variants ofmetacognitive
efficiency: Mdiff, Mratio and Mratio with excluding extreme values,
and three regularized variants ofMratio (bounded, logarithmic and
hierarchical Mratio). To assess type 1 performance invariance, sen-
sory noise was systematically varied for the simulation-based
analysis, whereas the natural variation of type 1 performance was
utilized for the empirical analysis of the Confidence Database. To
assess test-retest reliability, two artificial sessions of an experi-
ment were generated for simulation-based analysis and split-half
subsets of each participant’s data were created for the empirical
analysis.

The paper is structured in three parts. The first and the sec-
ond part are concerned with type 1 performance dependency and
reliability of metacognitive performance measures, respectively.
In the third part, I investigate task characteristics of studies in
the Confidence Database that affect the test-retest reliability of
metacognitive performance measures.

Results
Figure 1 introduces the type 1 and type 2 performance measures
investigated in this study in terms of their distribution in the
Confidence Database. For the creation of these distributions, I
included participants with at least 400 trials and a certain level
of above-chance performance (d′ >0.5).

Type 1 performance d′ shows a peak at an intermediate per-
formance level (corresponding to around 75% correct responses),
which is likely due to staircase procedures that often target inter-
mediate performance levels. The distribution has a positive skew.
While the distributions of the two metacognitive sensitivity mea-
sures, AUROC2 and meta-d′, are relatively symmetric and close to
a normal distribution, the histogram of Mdiff is clearly affected by
type 1 performance (the asymmetry is in the opposite direction to
d′, as Mdiff involves a subtraction of d′).

By contrast, the distribution ofMratio is closer to a normal distri-
bution. However, despite the conservative inclusion criteria,Mratio

shows a significant fraction of unrealistically extreme values. 2.4%
of subjects have negative Mratio values and 4% have Mratio values
higher than 1.5. This problem is more severe in studies with fewer
trials per subject (e.g. 4% negative values and 10% values >1.5 in
studies with less than 200 trials).

To address the instability of Mratio, we additionally evaluated a
scenario in which extreme values of Mratio are excluded, as well
as three regularization methods. Figure 1F shows the distribution
of Mratio values after excluding participants with negative Mratio

values (affecting 2.4% of theMratio values in Fig. 1E) andMratio val-
ues higher than an upper bound of 1.6 that is symmetric with
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Measuring metacognitive performance 3

Figure 1. Distributions of d′ and metacognitive performance measures in the Confidence Database. Only subjects with at least 400 trials were
included. (A) type 1 performance measured as d′. Values in square brackets on the x-axis represent proportion correct responses assuming an equal
proportion of trials for both stimulus categories. (B) Area under the type 2 receiver operating curve (AUROC2). (C) meta-d′. (D) Mdiff, the difference
between meta-d′ and d′. (E) Mratio, the ratio of meta-d′ and d′. (F) Excluding participants with an Mratio lower than 0 or higher than 1.6. (G) Bounded
Mratio with lower bound 0 and a symmetric upper bound of 1.6 (both the mean and the median are close to 0.8). (H) Logarithmized Mratio in which Mratio

values are floored at 0.1 before logarithmization. Note that the normal fit is almost unaffected when excluding the subjects of the lower bound peak.
(I) Hierarchical Mratio, based on Bayesian parameter estimation (Fleming 2017). Green lines indicate fits of a normal distribution (scaled by the
histogram amplitude). For each distribution, the W statistic based on a Shapiro–Wilk normality test (higher values indicate higher normality; Shapiro
and Wilk 1965), minimum/maximum values and the Fisher–Pearson coefficient of skewness are provided

respect to the median of 0.8 (affecting likewise 2.4% of Mratio val-
ues). This measure is henceforth referred to as Mratio (excl.). As a
result of excluding these participants, the normality of the Mratio

distribution slightly increases.
The first regularization method, ‘bounding’, forces lower and

upper bounds forMratio. Tomy knowledge, thismethod has not yet
been used in the literature. In the absence of a reference, I thus
chose the same bounds of 0 and 1.6 as discussed above, which
introduces a noticeable probability mass at both bounds (Fig. 1G).
A second regularization method, taking the ‘logarithm’, was sug-
gested by Fleming and Lau (2014) to address the occurrence of
extreme values and non-normality. However, as Fig. 1H shows,
taking the logarithm leads to a heavily asymmetric distribution
with a long left tail. If the goal is normality, taking the loga-
rithm is thus not advised. Finally, I tested a ‘hierarchical’ Bayesian
estimation method introduced by Fleming (2017) that effectively
regularizes extreme values by means of a group prior. The distri-
bution of hierarchical Mratio values shows a slight positive skew
(Fig. 1I).

The relationship between metacognitive
performance measures and type 1 performance
Simulation
In a first step, I simulated the relationship between the inves-
tigated set of metacognitive performance measures and type 1
performance. The advantages of simulated data are that they

allow precise control over underlying parameters of the generative
model, a systematic evaluation across an arbitrary range of rele-
vant variables (including sample size) and high statistical power.
At the same time it must be kept in mind that simulated mod-
els rely on assumptions about the process of data generation that
may deviate from the empirical truth.

Here, I assume that confidence is computed based on the
subjective probability of being correct, i.e. using the assump-

tion that observers have a reliable estimate of the stimulus-

generating process (in particular an estimate of their own sensory

noise). Equipped with such an estimate and using Bayes’ rule,
an observer is then able to compute a choice probability (see

section ‘General model’; Equation 3) and can use it to compute

confidence (Equation 4). I assume that reported levels of con-

fidence are subject to metacognitive noise, described by a Beta
distribution (Equation 6). The Beta distribution lends itself for

this purpose as it is, by design, a distribution that character-

izes the uncertainty of probability estimates. It is thus bounded

between 0 and 1 and implicitly avoids other nonsensical val-

ues. It can be parameterized with a spread parameter σm, which

henceforth is referred to as the metacognitive noise parameter.
The lower the σm, the more precise the reported confidence will
reflect the choice probability. For the maximum value of σm =0.5,
the Beta distribution approaches the uniform distribution and
thus confidence reports become random uniform draws from the
interval [0; 1].
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Figure 2. Simulation: relationship between type 1 (d′) and type 2 performance. Shaded areas denote asymmetrical standard deviations. (A–B) Both
measures of metacognitive sensitivity—AUROC2 and meta-d′—increase with increasing type 1 performance. (C) Mdiff decreases with increasing type 1
performance and more strongly so for increasing levels of metacognitive noise. (D) Mratio is more stable across different performance levels compared
to Mdiff but is likewise not independent of type 1 performance in the simulation. An initial pronounced increase at low levels of performance is
followed by a slight decrease starting from d′ values of around 2 (corresponding to a performance of around 80% correct). (E) Excluding participants
with an Mratio lower than 0 or higher than 1.6. (F–H) In the simulation, regularization of Mratio has no noticeable effect on its dependency on type 1
performance

For the purpose of describing the relationship between
metacognitive performance and type 1 performance, I simulated
data for varying levels of sensory and metacognitive noise. As
expected, the two measures of metacognitive sensitivity, AUROC2
(Fig. 2A) and meta-d′, (Fig. 2B) increase with increasing type 1
performance despite constant metacognitive noise.

Measures of metacognitive ‘efficiency’, on the other hand,
claim to be invariant with respect to type 1 performance. In the
case of Mdiff, which corresponds to the subtraction of meta-d′

and d′, this is not the case. As shown in Fig. 2C, Mdiff shows a
clear negative relationship with increasing type 1 performance
with the slope becoming more negative with increasing levels of
metacognitive noise. This can be understood with an extreme
example. Consider an observer that has very high metacognitive
noise such that they essentially pick confidence ratings at random.
Clearly, for this observer, meta-d′ should be equal or close to zero
irrespective of type 1 performance. If one thus subtracts type 1
performance (d′) frommeta-d′, the observed negative relationship
is expected. Lower levels of metacognitive noise only attenuate
this negative relationship, but even at moderate levels this bias is
still substantial.

By contrast, Mratio is largely stable across different type 1 per-
formance levels (Fig. 2D). While for Mdiff, the bias is worst for
the highest level of metacognitive noise, Mratio is most unsta-
ble for intermediate values of metacognitive noise. In the case
of purely random confidence ratings, Mratio stays flat at zero (as
it should), simply because the nominator meta-d′ is zero. Also
for the other extreme—metacognitive noise close to zero— Mratio

yields a stable estimate of 1. However, for intermediate values of
metacognitive noise, Mratio drops to zero as type 1 performance
approaches chance level (d′ =0) and also shows a slightly negative
slope at higher levels of type 1 performance. The general pattern
is very similar when excluding participants with extreme Mratio

values below 0 or above 1.6 (Fig. 2E), or for regularized variants
of Mratio (Fig. 2F–H). A minor deviation can be observed for Mratio

(excl.), where a slight positive bias is visible at low levels of type 1
performance and high levels of metacognitive noise.

Overall, while the type 1 performance dependence of AUROC2
and meta-d′ is well-known and expected, the simulation analyses
suggest that the putatively performance-independent measures
Mdiff and Mratio do not necessarily hold up to their claim. The
performance dependency is particularly clear for Mdiff, which
should not be used as a measure of metacognitive efficiency.
The performance dependency of Mratio is weaker and more com-
plex, depending on the expected range of both type 1 and type 2
performance.

Empirical data
In a next step, I evaluated the type 1 performance dependency of
metacognitive efficiency measures on empirical data of the Con-
fidence Database, which provides high statistical sample power
across a variety of tasks and modalities (Rahnev et al. 2020). I did
not test the two measures of metacognitive sensitivity, AUROC2
andmeta-d′, as they are a priori expected to be dependent on type
1 performance (also confirmed in the simulation).

To test for a linear relationship between type 1 performance
and each metacognitive efficiency measure, mixed linear mod-
els were used with study as a grouping variable and modality
(cognitive, memory, motor perception, mixed) as an additional
control variable. Moreover, each participants’ data were split
into two interleaved halves, such that the metacognitive perfor-
mance measures were computed on a different subset of the
data than the type 1 performance measure d′. This ensured
that the measurement noise associated with the estimation of
d′ per se and the measurement noise of the d′ that enters the
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Measuring metacognitive performance 5

Figure 3. Relationship between type 1 performance (d′) and metacognitive efficiency measures in the Confidence Database. (A) Like in the simulation,
Mdiff shows a clear negative relationship with d′. (B) Mratio likewise shows a similar pattern as the simulation: a slight initial increase is followed by a
decrease with increasing d′. (C) Excluding participants with Mratio values lower than 0 or higher than 1.6. (D–F) Regularized variants of Mratio:
bounding, logarithmic transformation and hierarchical estimation (Fleming 2017). For all methods except the bounded Mratio, the range of the y axis
was restricted to the 95% of data points, which were closest to the overall median. Black error bars indicate the mean and the standard error of mean
(SEM) of bins centred at the position of the errorbar and extending ∆d′ ±0.2 left and right of the centre. Green lines show the linear regression line to
all data points that match the inclusion criterion of d′ >0.5

computation ofmetacognitive efficiencymeasures (either via sub-
traction or division) were independent, thus preventing spurious
correlations.

In agreementwith the simulation,Mdiff shows a strong negative
relationship with type 1 performance (beta±SEM=−0.17±0.02,
P<0.001; Fig. 3A). Thus, also empirically Mdiff is not independent
of type 1 performance and should thus not be used as a measure
of metacognitive efficiency.

Mratio (without regularization) likewise shows a similar pattern
as in the simulation. In particular, Mratio shows a slight but steady
decrease with increasing type 1 performance (beta=−0.08±0.03,
P=0.010). As in the simulation, bounding and exclusion of
extreme Mratio values had only moderate effects on the type
1 performance dependency. In both cases, the negative rela-
tionship with d′ was numerically weaker, but still trendwise
significant (bounded Mratio: beta=−0.07±0.04, P=0.063; Mratio

with exclusion: beta=−0.08±0.04, P=0.072). Of note, when
pooling participants across studies in a simple regression anal-
ysis, the statistical evidence for this negative relationship was
stronger (cf. Fig. 3C and D).

By contrast, the hierarchical estimation and the logarithmiza-
tion of Mratio showed an effect with respect to the type 1 per-
formance dependency. While the negative relationship was even

more pronounced for the hierarchical Mratio (beta=−0.19±0.05,
P<0.001; Fig. 3F), compared to the regular Mratio, it disappeared
for the logarithmized Mratio (beta=0.01±0.02, P=0.581). Of
note, when pooling across participants, there was still a nega-
tive rank-order correlation between the logarithmized Mratio and
d′ (rs =−0.073, P=0.003; Fig. 3E). More data are thus neces-
sary to conclude with certainty that the relationship is indeed
absent.

While the empirical data thus largely reproduced the decrease
ofMratio with higher type 1 performance in the simulation, the ini-
tial increase of Mratio at low levels of type 1 performance is much
less evident. The regular Mratio shows a tendency in this direction
(Fig. 1B), but the scarcity of participants with very low type 1 per-
formance levels prevents a meaningful statistical analysis of this
effect. When excludingMratio values with extreme values (Fig. 1C),
this tendency disappears entirely; however, this might be due to
the positive bias at low type 1 performance levels observed in the
simulation (cf. Fig. 2E).

By and large, the results based on the Confidence Database
confirm the results of the simulation: a strong negative type 1
performance dependency for Mdiff and a weaker, possibly more
complex dependency of Mratio and its regularized variants, with a
general trend towards lower Mratio values with higher d′.
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Test-retest reliability of metacognitive
performance measures
Simulation
Test-retest reliability is a critical hallmark of any psychological
construct and little to nothing is currently known about the reli-
ability of metacognitive performance measures. As for the type 1
performance dependency, I first set out to evaluate the reliability
of these measures under the controlled settings of a simulation.

To this aim, I systematically varied the number of trials per
subject and the average performance level. For each number
of trials and performance level, two artificial experimental ses-
sions were simulated for 100 subjects, referred to as ‘test’ and
‘retest’ session, which allowed quantifying the test-retest reliabil-
ity. Metacognitive noise of each subject was drawn from a uniform
distribution covering the entire range from an ideal metacog-
nitive observer (σm =0) to a metacognitively blind observer
(σm =0.5), which effectively chooses confidence ratings at
random.

Two measures of reliability were employed: Pearson correla-
tion and the normalized mean absolute error (NMAE). Whereas
the Pearson correlation indicates whether the pattern of results
across participants is similar between two measurements, the
NMAE provides information about absolute measurement errors.
To allow a comparison between metacognitive performance mea-
sures, the NMAE normalizes the mean absolute error between
the test and retest session values by the mean absolute error
between each individual value and the ‘average’ in the other
session. An NMAE of e.g. 0.5 thus indicates that the average differ-
ence between test and retest values is half of the average distance
between the values and the average of the other session.

For the reliability analysis, I focus on the Mratio and its reg-
ularized variants, as all other metacognitive performance mea-
sures are strongly dependent on type 1 performance. This makes
it impossible to dissociate whether the reliability is driven by
the consistency of type 1 or type 2 performance. For complete-
ness, the reliability of other metacognitive performancemeasures
as well as type 1 performance is provided in Supplementary
Figure S1.

As expected, the reliability of Mratio increases with the num-
ber of trials per subject, i.e. increasing correlation and decreasing
NMAE (Fig. 4). Likewise, the reliability increases with increasing
type 1 performance. Intuitively, this is because the precision of
metacognitive performance estimates naturally increases as the
proportion of guessing trials decreases. In contrast, as type 1 per-
formance approaches the chance level, there is a dramatic drop in
reliability. For instance, at 250 trials and 60% correct responses,
the Pearson reliability is at only r=0.2.

To put the overall level of reliability into context, it is worth
contrasting it with the reliability of type 1 performance. The Pear-
son reliability of type 1 performance is close to 1 already at around
250 trials (Supplementary Figure S1A)—despite the fact that it is
based on noisy binary values (correct/incorrect). In comparison,
the reliability ofMratio is substantially lower in this trial range, not
least due to the fact that it is based on a combination of two noisy
variables—type 1 and type 2 responses.

Excluding extreme values of Mratio (Fig. 4B and F) has mainly
an effect on the NMAE at low performance levels and low trial
numbers. This is not surprising given the fact that these are the
conditions that typically produce extreme Mratio values. Of note,
the Pearson correlation appears to be minimally higher for the
Mratio without exclusion, at least under some conditions. A poten-
tial explanation is that extreme values introduce larger variance,

which might have a slight net positive effect on the Pearson
correlation.

Can regularization improve the reliability? Taking the loga-
rithm of the Mratio improves the Pearson reliability only for lower
levels of type 1 performance or at lower trial numbers and thus
only when Mratio is expected to be unstable. At typical perfor-
mance levels (>70% correct) and trial numbers, the simulation
suggests that test-retest reliability can even be worse than the
original Mratio. By contrast, bounding values of Mratio improves
the Pearson correlation across simulation parameters. Again,
improvements are largest at lower levels of type 1 performance
and at a lower number of trials. This analysis suggests that—
in terms of test-retest reliability—bounding should be preferred
over taking the logarithm (see also Supplementary Figure S2, for a
direct comparison of regularization/exclusion methods). Finally,
the reliability of the hierarchical Mratio is highly similar to the
bounded Mratio with the exception of high type 1 performance
levels at low trial numbers: here, the hierarchical Mratio clearly
outperforms all other measures.

Overall, I conclude that the reliability of Mratio will be poor in
many realistic scenarios. Studies investigating metacognitive effi-
ciency should thus carefully consider the number of trials and
the targeted type 1 performance level, both of which are fac-
tors that substantially affect reliability. Regularization methods
improve the reliability to a certain degree and are thus generally
recommended. Between regularization methods, the simulation
shows comparable improvements of the bounded and hierarchi-
cal Mratio in terms of Pearson reliability, while the logarithmic
Mratio performs worse and can even lead to a decrease in Pearson
reliability.

Empirical data
To assess the test-retest reliability of metacognitive performance
measures on empirical data, the data of each subject were divided
in two artificial subsets through an interleaved splitting proce-
dure. As the simulation indicated that the trial number per subject
is a critical quantity for the reliability of metacognitive perfor-
mance measures, the studies of the Confidence Database were
binned according to the split-half number of trials per subject (1st
bin: 0–200 trials, … 5th bin: 800–1000 trials). Since there was some
variance of trial numbers within studies, I excluded participants
whose trial numbers were outside the assigned bin of a study. As
the large majority of studies have intermediate performance lev-
els (85% of the studies have an average proportion correct between
0.65 and 0.85), the studies were not split up according to perfor-
mance. Importantly, the performance is quite similar for all trial
number bins (Fig. 3A, black line). As in the simulation, the focus
was on Mratio and its regularized variants (for other measures see
Supplementary Figure S3).

Without regularization and at moderate trial numbers (<400),
the Pearson reliability of Mratio is quite poor at r≤0.6 and the
NMAE is ≥1, indicating that the Mratio of a subject at test is, on
average, not closer to the same subject’s Mratio at retest than
it is to the mean of all subjects (Fig. 3A). The Pearson correla-
tion increases to around 0.7 and 0.85 for trial numbers between
400–600 and 600–800, respectively, and the NMAE drops below 1.
Overall, 400 appears as a sensible minimum recommended trial
number for studies using the regular Mratio.

Does regularization improve the reliability of Mratio? At low
to moderate trial numbers, bounding and logarithmization of
Mratio values lead to slight improvements over the regular Mratio
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Measuring metacognitive performance 7

Figure 4. Simulation: test-retest reliability of metacognitive performance measures. For each number of trials and performance level, two
hypothetical experimental sessions of 100 subjects were simulated, corresponding to test and retest. This procedure was repeated for X iterations and
averages were computed across iterations. Metacognitive performance measures [Mratio, Mratio (excl.), bounded Mratio, log Mratio and hierarchical Mratio]
were computed for each session separately. Reliability was quantified either by means of the Pearson correlation or the NMAE. Note that the NMAE is
not valid for the hierarchical Mratio (see section ‘Measures of test-retest reliability’) and is thus not shown. (A–E) Pearson correlation and the NMAE
quantify the reliability of metacognitive performance measures between test and retest. Note that exceedingly extreme values of the regular Mratio

(| Mratio | > 10) were excluded, as they caused some instability in the analysis. (F–I) Differences in test-retest reliability between measures

in terms of NMAE reliability (Fig. 3B–G). The Pearson reliability is
largely unaffected by regularization and also does not exhibit the
slight advantage of the hierarchicalMratio observed for high type 1
performance levels in the simulation. There are no detectable dif-
ferences between the regularization methods (more data would
be necessary). Similar to the simulation, excluding Mratio values
slightly decreased the test-retest reliability (Fig. 5F, upper panel).
An advantage in terms of NMAE reliability was not observed
(Fig. 5F, lower panel).

As to be expected, the benefit of regularization vanishes
entirely at larger trial numbers. For studies with around 600 trials
or more, there is no longer an improvement of NMAE reliability
for any regularization method. This suggests that studies that are
poweredwith 600 trials andmore per subject can quite safely omit
regularization.

Task characteristics affecting the reliability of
metacognitive performance measures
As shown in the previous section, the number of trials and type
1 performance constrain the expected reliability of Mratio. Both
factors must be carefully chosen to achieve an acceptable level
of measurement reliability. In this final section I was interested
in which other study and task characteristics affect reliability
of measured Mratio values. Specifically, I was interested in the
following five task characteristics: (i) the number of available con-
fidence ratings; (ii) whether ratings are continuous or not; (iii)
whether confidence ratings are provided simultaneouslywith type
1 choices; (iv) whether feedback is provided and (v) whether there
is an online staircase procedure. I focused on the reliability of
regular Mratio without regularization and therefore selected only

studies with at least 400 trials, in line with the recommendations
of the previous sections.

The test-retest reliability ofMratio was computed separately for
each study and defined a mixed linear model with the test-retest
reliability as the dependent variable and the above task character-
istics as the independent variables of interest. Additional control
variables were the number of subjects, the number of trials and
study-specific averages of type 1 performance (d′), confidence,
Mratio and modality (categorical predictor: cognitive, motor, per-
ception, mixed or memory). The grouping variable of the mixed
model was ‘study id’, i.e. a unique identifier for each study.

Confirming the previous analyses, type 1 performance and the
number of trials strongly predict the test-retest reliability ofMratio

(Fig. 6). Among the variables of interest, simultaneous choice and
confidence responses and the number of available ratings were
associated with higher reliability (only bivariate correlation) and,
somewhat surprisingly, external feedback was associated with
slightly lower reliability.

The positive effect of simultaneous choice and confidence rat-
ings on the reliability of Mratio was strong. While the average
test-retest correlation is r=0.83 when responses are provided
simultaneously, it drops to r=0.51 when confidence ratings are
provided in a separate response after the type 1 choice. Online
staircasing showed a trendwise association with lower reliability,
which may be interesting in reference to the ongoing discussion
about the interaction of staircase procedures and Mratio (Rahnev
and Fleming 2019).

It is notable that test-retest reliability was unaffected by
whether confidence ratings were given on a discrete or continuous
scale, although a higher number of available confidence levels
slightly improved the Pearson reliability.
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Figure 5. Test-retest reliability of metacognitive performance measures in the Confidence database. Test-retest reliability is computed either as the
Pearson correlation coefficient or the NMAE between test and retest trials. The x-axis denotes the average split-half number of trials for the
Confidence Database studies (bins of 200 from 0 to 1000 trials), i.e. the number of trials per test and retest. In this way, the expected reliability for
other/new studies with overall N trials can simply be obtained by looking up the reliability for x=N. The accuracy (proportion correct) is relatively
constant across bins and thus likely not a confounder. Note that the number of samples refers to the split-half test and retest datasets; hence, the
total number of samples per subject is twice as high. The shaded areas indicate standard errors across studies. (A–E) Test-retest reliability of Mratio,
Mratio (excl.) and regularized variants. For convenience, type 1 performance is plotted in panel A, given as proportion correct responses. Note that the
NMAE is not valid for the hierarchical Mratio (see section ‘Measures of test-retest reliability’) and is thus not shown. (F–I) Differences in test-retest
reliability between Mratio and Mratio (excl.)/regularized variants of Mratio

Figure 6. Study characteristics affecting the test-retest reliability of Mratio. Green bars indicate the bivariate correlation coefficient between the
predictor and the measure of reliability; blue bars show the regression coefficient of a linear model including all predictors. (A) Test-retest reliability
measured with the Pearson correlation coefficient. Positive values indicate improvements in reliability. (B) Test-retest reliability measured with the
NMAE. Negative values indicate improvements in reliability. ◦P<0.1, *P<0.05, **P<0.01, ***P<0.001

The strongest and most robust conclusion from this analysis is
the clear benefit of simultaneous type 1 and type 2 responses on
the test-retest reliability of Mratio.

Discussion
In the current work, I investigated the type 1 performance inde-
pendence and reliability of metacognitive performance measures.
I showed that even measures of metacognitive efficiency, i.e. mea-
sures that normalize for type 1 performance, are not necessarily
independent of type 1 performance. This dependency is much

weaker and thus possibly tolerable for Mratio compared to Mdiff.
The analyses of test-retest reliability showed that Mratio has quite
poor test-retest reliability and standard trial numbers; moreover,
the reliability analyses provide guidance and recommendations
for regularization methods, trial numbers and task design.

All current measures of metacognitive
performance are dependent on type 1
performance
A quintessential aspect for measures of metacognitive perfor-
mance is to what degree a measure isolates type 2 from type 1
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performance. The intricacy of the tight relationship between type
1 and type 2 has been long known and has led to the development
of meta-d′ (Rounis et al. 2010; Maniscalco and Lau 2012, 2014)
and two proposals for metacognitive performance measures that
explicitly normalize for type 1 performance (Mdiff andMratio). Here,
I showed through simulation and application to empirical data
thatMdiff is heavily biased by type 1 performance and thus should
not be used if independence of type 1 performance is important.
Specifically, Mdiff decreases with increasing type 1 performance
and this negative relationship becomes stronger with increasing
metacognitive noise.

WhileMratio is clearlymore stable across different levels of type
1 performance, it may not be entirely independent. Also here, sim-
ulation and application to empirical data show agreement and
indicate a relationship between type 1 performance and Mratio

that can be described as an inverted U-shape: as type 1 perfor-
mance approaches the chance level, Mratio approaches zero; with
increasing type 1 performance, Mratio shows a slight but a steady
decrease. Of note, this pattern is independent of the number of tri-
als: the simulation used a very large number of 10 000 trials and
the pattern did not change when the number of trials was either
increased or decreased.

A limitation of simulation-based analyses is that any result
could be conditional on the chosen model and the relationship
between Mratio and type 1 performance may be of a different kind
for the unknown ground truth model. While it is a good sign that
the simulation reproduced the general pattern of the empirical
data, it is not a proof. This is less of an issue for the conclusions
about Mdiff, since its type 1 performance dependency can be log-
ically explained and its empirical negative relationship with type
1 performance was so strong that a confirmation by simulation
is less important. However, for Mratio neither of these arguments
can be used. In an exploratory analysis I therefore probed the
robustness of the simulation result for Mratio by testing additional
metacognitive noise distributions. As shown in Supplementary
Figure S4, the results were highly similar to the Beta distribution
used in the main simulation. Future studies could test the type
1 performance dependency for different model architectures as
well.

An additional aspect to consider is that there might be a true
relationship between type 1 performance and metacognitive abil-
ity, which is not due to a measurement confound. For instance,
there could be a true positive relationship reflecting the gen-
eral observation that cognitive abilities correlate across domains
(Carroll 1993). In this view, the observed negative correlation of
the measures might factually be stronger and is masked to some
degree by the general positive relationship in the population. Sup-
port for this view comes from a recent large-scale model-based
analysis of the Dunning–Kruger effect, which concluded that low
performers (in the type 1 task) also tend to have more noisy rep-
resentations of their type 1 accuracy (Jansen et al. 2021; see also
Mazor and Fleming 2021). Alternatively, there could be a true
negative relationship because of a potential trade-off in allocat-
ing cognitive resources to either the type 1 or the type 2 task.
While this highlights the difficulty to conclusively prove the ‘non-
independence’ of metacognitive performance measures and type
1 performance, the burden of proof certainly lies on the side of
those claiming ‘independence’.

Possible solutions to address the dependency on
type 1 performance
While the type 1 performance dependency of Mratio may be
regarded as relatively subtle, it can nevertheless be an issue,

especially as higher and higher sample sizes are collected in online
experiments or collaborative research projects. Large sample sizes
will be sensitive even to small type 1 performance confounds and
lead to artifactual results.

An obvious solution to this issue is online staircase procedures
that continuously adjust stimulus difficulty towards a constant
target type 1 performance level (e.g. Rouault et al. 2018). How-
ever, staircase procedures introduce a different issue. As noted
by Rahnev and Fleming (2019), a mix of stimulus difficulty lev-
els can artificially inflate estimates of metacognitive performance
relative to a design with a single difficulty level. In brief, the issue
is that it is easier for subjects to assign high confidence to correct
choices and low confidence to incorrect choices when the exper-
iment itself contains objectively easier and harder trials. This
might not be a problem, if the staircase-induced inflation would
be a constant shift that cancels out in a comparison between con-
ditions. However, there is no guarantee that the mix of easier and
hard trials is identical for different subjects and thus also no guar-
antee that the shift is constant. For instance, relative to control
subjects, a group of patients might show stronger fluctuations
of concentration, which could lead to larger adjustments in the
staircase procedure. Larger differences in objective stimulus diffi-
culty in turn could lead to an inflated estimate of metacognitive
performance. For this reason, Rahnev and Fleming (2019) gen-
erally recommend a single-difficulty level, which however leads
back to the problem of type 1 performance confounds. Offline
staircase procedures can alleviate the issue to a certain degree.
However, because offline staircase procedures are notoriously
imprecise (García-Pérez 1998) and learning will often continue
throughout the main experiment (not necessarily the same in dif-
ferent groups), it is often hard to equate performance reliably with
offline staircase procedures.

At present, there is thus no all-purpose solution. In gen-
eral I recommend including confounding factors in any anal-
ysis of metacognitive performance, i.e. type 1 performance in
single-difficulty-level designs and staircase variability (Rahnev
and Fleming 2019) in designs with an online staircase. A specific
issue when controlling for type 1 performance is that d′ effectively
would enter both sides of the regression equation, as it is also
contained in Mratio =meta-d′/d′. In this case I recommend using
a cross-validated regression approach, such that d′ in the DV and
IV are computed on independent data (as in the analysis in Fig. 3).
While doing so, one should be aware of the fact that controlling
for type 1 performance might remove true interindividual vari-
ability in metacognitive performance when type 1 performance
and metacognitive ability factually correlate in the population (as
noted above).

The test-retest reliability of Mratio is strongly
affected by type 1 performance and the number
of trials
Most studies in metacognition research aim for intermediate type
1 performance levels to introduce a sufficient degree of variance in
confidence ratings. The simulation analyses showed that, in terms
of test-retest reliability, it makes all the difference whether type 1
performance is at 60%, 70% or 80% correct responses. At 60% cor-
rect responses or below, the Pearson reliability ofMratio is very poor
even at decent trial numbers of around 400–600 (r≈0.4). By con-
trast, at 80% correct responses the Pearson reliability is around
r≈0.8 for 400–600 trials and thus already substantially better.
In the absence of other constraints, I thus recommend a perfor-
mance level of approximately 80% correct responses for studies
investigating metacognitive efficiency.
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As for any noisy measure, the test-retest reliability of Mratio

is affected by the number of trials measured for a subject. In
general, the number of trials should be higher for lower levels
of type 1 performance. For instance, if type 1 performance is at
60% correct responses around 1000 trials are required according
to the simulations to even achieve a Pearson reliability of r=0.6.
The analysis of the Confidence database, which provides a cross
section of trial numbers used by studies in the research field, sug-
gests a minimum recommended trial number of 400 trials for
studies measuring metacognitive performance.

Regularization can boost the test-retest reliability
of Mratio

To address the instability of Mratio, I evaluated three differ-
ent methods of regularization (bounded, logarithmic and hier-
archical Mratio) and tested their effects on test-retest reliability.
With the exception of the logarithmic Mratio, all regularization
methods consistently improved the test-retest reliability. In gen-
eral, regularization improved the NMAE much stronger than the
Pearson correlation. This is not surprising as the NMAE is nat-
urally improved when extreme values are tamed by regulariza-
tion. Nevertheless, regularization also introduced a slight but
significant advantage with respect to the Pearson reliability in
both simulated and empirical data. The benefits of regulariza-
tion vanished as the number of trials increased. For studies
with 600 trials or more in the Confidence Database, the relia-
bility was almost indistinguishable for Mratio with and without
regularization.

For studies measuring below 600 trials per subject, I rec-
ommend using some form of regularization. Given the heavily
asymmetric distribution of Mratio values following a logarithmic
transformation, I advise against this method.

The hierarchical Mratio can likewise be regarded as a form of
regularization and performed well in terms of test-retest reliabil-
ity with a pronounced advantage relative to other regularization
methods for high type 1 performance levels. Nevertheless, its
hierarchical estimation approach is not without problems. Hier-
archical Mratio values cannot be compared between studies (when
fitted separately) as they depend on the study-specific group aver-
age. In within-subject designs, the correlation/variance structure
has to be specified with great care to enable valid inferences. For
instance, to my knowledge there is currently no available solution
for mixed designs with both within-subject and between-subject
factors. However, it should be noted that I used the hierarchical
Mratio as a means to regularize single-subject estimates, whereas
its main original aim was allowing for an accurate inference on
group-level parameters when individual trial numbers are lim-
ited. Although group-level measures are beyond the scope of
this, given their increased popularity (e.g. Harrison et al. 2020),
future studies should assess the reliability of these measures
as well.

In terms of regularization I thus recommend a simple bounding
method along the lines suggested in this work. While this method
naturally introduces edge densities in the resulting distributions,
these edge cases should be relatively rare for reasonable choices of
type 1 performance and the number of trials. Applied to the data
of the Confidence database, the distribution resulting frombound-
ing showed a high degree of normality for the bounds applied
(lower bound 0 and upper bound 1.6). The advantage compared
to functional transformations such as the logarithmic transfor-
mation is that the absolute Mratio values resulting from bounding
are still in the original scale and thus interpretable.

Task characteristics that improve the test-retest
reliability of Mratio

I argue that the test-retest reliability of metacognitive perfor-
mance measures can be used as a quality measure for the
confidence ratings obtained in a study. In brief, the rationale is
that more precise confidence ratings will improve the measure-
ment reliability of the psychological construct that is computed on
the basis of these ratings (i.e. metacognitive performance/ability).

Among the five task characteristics of interest (continuous ver-
sus discrete rating scales, number of discrete confidence ratings,
simultaneous versus sequential type 1/2 responses, feedback,
presence of an online staircase), simultaneous type 1/2 responses
most strongly benefited the test-retest reliability of Mratio. Com-
pared to post-decisional ratings of confidence, simultaneous type
1/2 responses may be more precise as they are closer to the per-
cept and thus a potential post-decisional memory loss or other
sources of noise are minimized. Nevertheless, it is worth noting
that one could have made an argument for the reverse finding as
well, such that sequential type 1/2 responses give more room for
post-stimulus computations of confidence that ultimately lead to
more precise and consistent confidence ratings.

Interestingly, contrary to the expectation, there was a weak
negative effect of external feedback, i.e. the presence of feedback
reduced the test-retest reliability of Mratio. It might be possible
that feedback leads to ongoing noisy recalibrations of confidence
ratings, which introduces additional variability. However, given
the uncertainty of the effect, this finding should be considered as
exploratory.

I conclude that studies investigating metacognitive perfor-
mance should consider the use of simultaneous type 1 and type 2
responses to improve measurement reliability.

Future directions
What may be ultimately required to isolate type 1 and type 2 per-
formance is a mechanistic model of metacognition that captures
relevant sources of metacognitive noise and biases and describes
the functional transformations underlying human reports of con-
fidence. Such a model may allow to reverse-engineer metacogni-
tive noise parameters that characterize metacognitive ability in
humans (or different facets thereof) separately from sensory or
decisional noise parameters. While there are some initial propos-
als for such models (Bang et al. 2019; Shekhar and Rahnev 2021),
there is currently no established model.

Conclusion
In sum, this article investigated the type 1 performance depen-
dency and test-retest reliability of metacognitive performance
measures. It characterizes the behaviour of metacognitive per-
formance measures in dependence of key variables (type 1 per-
formance, overall level of metacognitive noise and number of
trials) both on simulated and empirical data. On the basis
of these results, it provides guidance and recommendations
for researchers interested in investigating metacognitive perfor-
mance.

Methods and materials
Empirical studies
Analyses of empirical data are based on studies of the Confidence
Database, a publicly available repository of dataset with confi-
dence ratings (Rahnev et al. 2020). At the time of access, the
database had overall 145 studies. Included studies cover different
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cognitive domains (e.g. perception, memory or decision making),
different confidence scales (such as binary, n-point scales, con-
tinuous scales and wagering) collect confidence at different times
(for example, after or simultaneous with the decision). Inclusion
criteria for studies were tasks with exactly two response options
(i.e. excluding studies with more than two or continuous type
1 responses). If not otherwise specified, we included only par-
ticipants with at least 400 trials and d′ >0.5, which reduced the
sample size from N=6912 to 1757 in these instances.

Metacognitive performance measures
I evaluated two measures of metacognitive sensitivity (AUROC2
and meta-d′) and two measures of metacognitive efficiency (Mratio

and Mdiff). meta-d′ and its derivatives Mratio and Mdiff were
computed on the basis of Python adaptations of the original
code as described in Maniscalco and Lau (2012, 2014), available
at http://www.columbia.edu/∼bsm2105/type2sdt/. All codes are
made available upon the final publication of this article.

Due to the instability of Mratio at low trial numbers or low
levels of type 1 performance (Fleming and Lau 2014), I evalu-
ated a scenario in which extreme Mratio values are excluded and
three additional regularized variants of Mratio (Table 1). In the first
case, referred to as Mratio (excl.), I excluded participants below
and above specified upper bounds. A sensible lower bound is 0,
which corresponds to a metacognitively blind observer. Also note
that negative values of Mratio could show nonsensical behaviour.
For instance, when meta-d′ is negative, Mratio will increase with
increasing (positive) type 1 performance, although it should
decrease in the logic of a metacognitive performance measure.
For the upper bound one might consider 1, which corresponds to
an ideal metacognitive observer. However, this will often lead to
an asymmetric highly non-normal distribution, as Mratio values
greater than 1 are quite common, possibly also due to post-
decisional processing that benefits confidence reports. Instead,
here I propose to use an upper bound that is symmetric with
respect to themean ormedian ofMratio in the ConfidenceDatabase
(both are around 0.8). In this work I thus use an upper bound
of 1.6.

Determining these bounds based on the Mratio distribution
within an individual study will often be problematic, as such esti-
mates are easily skewed by outliers in studies with typical sample
sizes. I thus recommendusing the bounds 0 and 1.6 proposed here,
unless the sample size of a study allows for a sufficiently precise
estimate of the distribution.

As a first regularization method, values of Mratio were sim-
ply ‘bounded’ between the lower and upper bounds explained
above. Second, a ‘logarithmic’ transformation of the Mratio was

Table 1. Variants of Mratio

Method Formula
Parameters used in
this work

Excluding lb ≤ Mratio ≤ ub Lower bound lb=0,
upper bound
ub=1.6

Bounding max(lb,min(ub,Mratio)) Lower bound lb=0,
upper bound
ub=1.6

Logarithmic transfor-
mation

logmax(lb,Mratio) Lower bound lb=0.1

Hierarchical estima-
tion

see Fleming (2017)

tested, which was suggested by Fleming and Lau (2014) as a
generic regularization method for ratio measures, giving equal
weight to increases and decreases relative to an ideal metacog-
nitive observer with log(Mratio)=0. Note that taking the logarithm
also requires the introduction of a positive lower bound, as the log-
arithm is undefined in the negative range. Here, 0.1 was chosen as
a minimum. Third, a ‘hierarchical’ Bayesian estimation of Mratio

was evaluated (Fleming 2017), which effectively tames extreme
values by means of a group prior.

Measures of test-retest reliability
The test-retest reliability of metacognitive performancemeasures
was evaluated both by means of the Pearson correlation and by
means of a measure of absolute error, the normalized mean abso-
lute error (NMAE). While the Pearson correlation is scale- and
mean-invariant and thus quantifies to what degree the ‘pattern’
of results is similar across participants between two experimen-
tal sessions, the NMAE takes into account possible mean or scale
shifts.

Let x and y be two vectors containing themetacognitive perfor-
mance values of the N subjects for a test session (x) and a retest
session (y). The Pearson reliability is computed as the standard
sample correlation coefficient between paired data x and y. The
NMAE of vectors x and y of length N is defined as follows:

NMAE(x,y) =
1

N

N∑
i=1

|xi−yi|
/(

1

2N

N∑
i=1

|xi−ȳ|+
1

2N

N∑
i=1

|yi−x̄|
)
(1)

While the numerator is the regular mean absolute error, the
denominator is the mean absolute difference of each value and
the average of the other session. The denominator ensures that
the overall error is largely independent of the scaling of a mea-
sure, thus allowing comparisons between different metacognitive
performance measures.

Note that the NMAE is not valid for the hierarchical Mratio and
was thus not computed for this metacognitive performance mea-
sure. The reason is that separate group priors are applied to the
data of the test and retest set, which bias individual values to the
respective group mean. The resulting distributions for test and
retest have often considerable mean differences with individual
values being tightly clustered around the respective means. While
the overall mean difference is normalized for (denominator of the
NMAE), the compression around the distribution means will lead
to an artifactual reduction of the NMAE.

Simulations
General model
I simulated artificial observers that were presented with stimuli
pertaining to two stimulus categories. The task of observers was
to identify the correct stimulus category, i.e. a binary choice task.
I assume that percepts are subject to Gaussian sensory noise with
standard deviation σs:

percept∼ N
(
±
µ

2
, σs

)
(2)

where ±µ/2 are the stimulus means.
Using Bayes’ rule, the observer computes the choice probability

P as follows:

p=
1

1+ exp
(
−µ·percept

σ2
s

) (3)

The observer chooses stimulus category 2whenever P≥0.5 and
else stimulus category 1. An auxiliary (choice-independent) confi-
dence variable c∈ [0; 1] is computed from this choice probability:
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c=

{
2 · (0.5− p) if p< 0.5
2 · (p− 0.5) else

(4)

However, the final confidence reports are subject tometacogni-
tive noise described by a metacognitive noise distribution M with
mode c and metacognitive noise σm:

confidence∼M(c,σm) (5)

The parameter σm of the metacognitive noise distribution M
defines the spread of the distribution. For the simulations in this
work, the Beta distribution was used, which is naturally bounded
between 0 and 1:

confidence∼
1

B(α,β)
xα−1(1− x)β−1 (6)

The used parameterization is α= c (1/σm −2)+1 and
β= (1− c)(1/ σm −2)+1, for which the Beta distribution has mode
c and spread 0< σm ≤0.5 (note that σm is not a standard devia-
tion). For the maximum value of σm =0.5, the Beta distribution
becomes the uniform distribution.

The relationship between type 1 performance and
metacognitive performance
To assess the relationship between type 1 performance and
metacognitive performancemeasures, type 1 and confidence data
were simulated for different type 1 and 2 performance levels. One
hundred different performance levels were evaluated by varying
the sensory noise parameter σs from 0 (no sensory noise, i.e. per-
fect performance) and 5 (very high sensory noise, approximately
chance-level performance). Six metacognitive noise levels were
assessed by varying σm between 0 and 0.5 in steps of 0.1. For
each pair (σs, σm), 1000 subjects with 10 000 trials each were
simulated.

Test-retest reliability
To evaluate the test-retest reliability of metacognitive perfor-
mance measures, two experimental sessions were simulated for
each subject. Type 1 performance and the number of trials in a
session are expected to be critical factors for the test-retest reli-
ability and were hence under special consideration. Specifically,
the sensory noise parameter σs was varied to induce different
levels of type 1 performance between 55% correct and 95% cor-
rect and the number of trials was varied between 25 and 1000 in
steps of 25. For each pair (σs, #trials), two independent experimen-
tal sessions of 100 subjects were generated. For each session, all
metacognitive performance measures under consideration were
computed. Reliability was assessed both by means of the Pearson
correlation and the NMAE.

To estimate uncertainty, the entire procedure described above
was repeated 300 times with different random seeds.

Analyses of empirical data
Preprocessing
All studies were transformed to a homogenous format. Most
importantly, as the computation of meta-d′ requires discrete con-
fidence ratings, a discretization procedure was defined. The max-
imum number of discrete confidence ratings was limited to 6, as
this is the highest number that was used in a major proportion
of studies. Trials were sorted into six bins on a percentile basis
(aiming for a balanced number in all confidence bins) with the
constraint that all bins must be unique. Negative confidence rat-
ings, which some studies included to indicate that one is confident

in being wrong, were floored at 1, the lowest confidence rating.
Verbal confidence ratings were converted to appropriate numer-
ical ratings (e.g. ‘difficult’ and ‘easy’ were converted to ratings
1 and 2) and fractional ratings (e.g. indicating the probability of
being correct) were converted to integers. While it is clear that
there is uncertainty in how to convert different confidence rat-
ing procedures to a common scale, this is an issue inherent to any
particular scale already at the response stage, as there is generally
little knowledge of how participants translate perceived levels of
confidence to available rating options.

The relationship between type 1 performance and
metacognitive performance
The relationship between d′ andmetacognitive performancemea-
sures in the Confidence Database was characterized in two ways.
First, the overall linear slope between type 1 and type 2 per-
formance across all subjects was computed by means of ordi-
nary least square regression. This analysis shows whether there
is a systematic linear trend between type 1 performance and
each metacognitive performance measure. To derive a more fine-
grained empirical function, averages for d′ bins were computed,
centred at values ranging from 0.3 to 2.9 in steps of 0.2 (window
size: ±0.2) and standard errors within each bin were computed.
The d′ range was limited to a range of 0.1–3.1 (only a few subjects
show even smaller or greater type 1 performance).

Test-retest reliability
As it is possible that the test-retest reliability ofmetacognitive per-
formance measures strongly depends on idiosyncratic character-
istics of empirical data, I also evaluated the test-retest reliability
of studies in the Confidence Database. As the number of trials per
subject is a strong predictor of test-retest reliability, the studies
of the Confidence Database were divided according to the split-
half number of trials (5 bins: 0–200 trials, …, 800–1000 trials). For
each subject, every second trial was assigned to the ‘test session’
and every other trial to the ‘retest session’. As in the simulation, I
computed both the Pearson correlation coefficient and the NMAE
(Equation 1) as measures of reliability.

Supplementary data
Supplementary data is available at NCONSC online.

Data availability
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