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Abstract

Reinforcement learning algorithms have a long-standing success story in explaining the
dynamics of instrumental conditioning in humans and other species. While normative rein-
forcement learning models are critically dependent on external feedback, recent findings in
the field of perceptual learning point to a crucial role of internally generated reinforcement
signals based on subjective confidence, when external feedback is not available. Here, we
investigated the existence of such confidence-based learning signals in a key domain of
reinforcement-based learning: instrumental conditioning. We conducted a value-based deci-
sion making experiment which included phases with and without external feedback and in
which participants reported their confidence in addition to choices. Behaviorally, we found
signatures of self-reinforcement in phases without feedback, reflected in an increase of sub-
jective confidence and choice consistency. To clarify the mechanistic role of confidence in
value-based learning, we compared a family of confidence-based learning models with
more standard models predicting either no change in value estimates or a devaluation over
time when no external reward is provided. We found that confidence-based models indeed
outperformed these reference models, whereby the learning signal of the winning model
was based on the prediction error between current confidence and a stimulus-unspecific
average of previous confidence levels. Interestingly, individuals with more volatile reward-
based value updates in the presence of feedback also showed more volatile confidence-
based value updates when feedback was not available. Together, our results provide evi-
dence that confidence-based learning signals affect instrumentally learned subjective val-
ues in the absence of external feedback.
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Author summary

Reinforcement learning models successfully simulate value-based learning processes (e.g.,
“How worthwhile is it to choose the same option again?”) when external reward feedback
is provided (e.g., drops of sweet liquids or money). But does learning stagnate if such feed-
back is no longer provided? Recently, a number of studies have shown that subjective con-
fidence can likewise act as an internal reward signal, when external feedback is not
available. These results are in line with the intuitive experience that being confident about
choices and actions comes with a satisfying feeling of accomplishment. To better under-
stand the role of confidence in value-based learning, we designed a study in which partici-
pants had to learn the value of choice options in phases with and without external
feedback. Behaviorally, we found signatures of self-reinforcement, such as increased confi-
dence and choice consistency, in phases without feedback. To examine the underlying
mechanisms, we compared computational models, in which learning was guided by confi-
dence signals, with more standard reinforcement learning models. A statistical compari-
son of these models showed that a confidence-based model in which generic confidence
prediction errors (e.g., “Am I as confident as expected?”) guide learning indeed outper-
formed the standard models.

Introduction

The reinforcement learning principle, according to which learning is controlled by action-con-
tingent feedback, explains fundamental forms of learning across many modalities and species
[1]. Yet, there are important instances of learning that occur in the absence of external feed-
back, and which thus challenge the generality of this model class.

A prominent example is perceptual learning, for which behavioral improvements are fre-
quently found through training or mere exposure and without any external feedback [2-6].
Moreover, the (subjective) sense of accomplishment in an unrelated task likewise induces per-
ceptual learning, even in the absence of stimulus awareness [7,8]. Together, these findings
have led to the notion of a ‘diffuse internal reward signal’ [9], i.e. a reinforcement signal that is
triggered based on some form of internal feedback.

More recently, such internal feedback signals have been investigated by means of fMRI,
operationalized in the form of confidence reports [10-13]. The consistent finding of these
studies was that confidence-based learning signals engaged a network of brain regions that has
previously been identified for the coding of reward prediction errors [14], including the ventral
striatum (a dopaminergic target region) and the ventral tegmental area (a dopaminergic source
region). In line with these neurobiological observations, a recent study has shown that having
confidence in one’s own actions is associated with a feeling of increased pleasantness and satis-
faction [15]. Together, these findings suggest that learning based on external and internal feed-
back operates on a shared neural mechanism.

In the present study, we aimed to examine the generality of such putative confidence-based
learning signals. We hypothesized that, if confidence in actions indeed takes the form of a dif-
fuse internal reward signal, it may also affect the subjective values of these actions, similar to
instances of external reinforcement. What could be the benefit of such a self-reinforcement
mechanism in the context of value-based decision making? Although we prefer to be agnostic
at this point about whether such a mechanism would be adaptive, self-reinforcement could
strengthen previously learned preferences to make them more robust in the face of decision
noise and potential memory leakage. On the other hand it is possible that such a mechanism is
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a general automatic concomitant of learning and decision making without external feedback
that, while beneficial in some domains, may not be useful or even maladaptive in others,
including value-based decision making.

Indeed, the notion that subjective values change in the absence of external feedback — with-
out an obvious adaptive benefit — is not new. The most prominent example is the cognitive dis-
sonance theory of Festinger [16], which posits that values of chosen options are reinforced to
reduce cognitive dissonance between the chosen and the unchosen option. Although early evi-
dence for the theory by Brehm [17] has been challenged on methodological grounds [18,19],
more recent studies have provided new support [20-27]. In a very recent study, Luettgau and
colleagues [28] have shown that such choice-induced preference changes can also be observed
for classically conditioned stimuli.

In the present work, we designed an instrumental conditioning task in which observers
learned about the monetary values of a set of conditioned stimuli (CS). Crucially, after an ini-
tial training phase with monetary feedback, subjects entered a second phase in which action-
contingent feedback was omitted. Subjects were told that they would eventually receive the
rewards for their actions at the end of a block, but they did not get trial-by-trial feedback on
their choices. We reasoned that, in the absence of external feedback, value representations
would still be shaped by a subject’s confidence in their choices.

While our main analytic approach was model-based (see below), we also tested three direct
behavioral hypotheses. Specifically, we reasoned that if the degree of confidence in a value-
based choice reinforces the value of this very choice, the result is a self-reinforcing cycle in
which subjective values for more preferred choices are further strengthened and less preferred
choices are further devalued. Over time, the absence of external feedback in instrumental con-
ditioning should thus lead to an augmentation of preferences for available choice options. We
therefore hypothesized that the absence of feedback would lead to 1) an augmentation of initial
preferences (“the rich get richer and the poor get poorer”), and as a result to 2) an increase of
choice consistency and 3) an increase of choice confidence (as preferences become more
defined).

To better understand the dynamics of value changes in the absence of feedback — and a
potential role of confidence therein — we devised a family of computational models in which
confidence guides learning when no external feedback is available. In terms of a confidence-
based learning signal, we adopted the notion of confidence prediction errors: the difference
between expected confidence and actual confidence [12]. We have previously shown that con-
fidence prediction errors constitute a sensible computational learning signal in the context of
perceptual learning and that a ventral striatal correlate of this signal was predictive of percep-
tual learning success [12,29].

Results
Behavioral results

The experimental paradigm was structured in the logic of a standard value-based decision
making task in which participants had to learn about the values of initially neutral conditioned
stimuli (CS). The experiment consisted of 11 blocks in each of which participants had to learn
about the value of 5 new CS with different objective values. Trial-wise feedback was provided
in the first and third phase (phases 1 and 3) of a block, but critically, was omitted for a varying
number of trials in between (phase 2) (Fig 1A). In each individual trial, participants had to
make a choice between two CS and subsequently indicated their choice confidence on a scale
from 0 to 10 (Fig 1B).
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Fig 1. Experimental design. (A) Block structure. In each block, participants had to learn about the values of five CS based on the feedback in phases 1 and 3.
The critical phase was a period of 5-15 trials in-between phases 1 and 3 in which participants did not receive feedback (phase 2). Before and after phase 2,
participants rated the values of each CS on a continuous scale. (B) Trial structure. In each trial, participants chose between two CS and indicated their
confidence on a scale from 0 to 10. In phases 1 and 3, the reward outcome for the chosen option was presented in the form of a scratch card with 50 fields, each
of which could contain a 1 EUR coin or a blank. In phase 2, the scratch card was not revealed; however, participants were instructed that they would receive the
hidden reward on the scratch card at the end of the experiment.

https://doi.org/10.1371/journal.pcbi.1010580.9001

We first ensured that participants successfully learned the task. For all analyses involving
behavioral learning effects, we used either generalized linear (GLMM; for the correctness of
choices) or linear (LMM; for confidence) mixed effects models. We found that participants
improved their choice performance (proportion correct) by learning from trial-wise feedback,
as indicated by a main effect of trial number across the feedback phases 1 and 3 (GLMM: z =
11.72, p < 0.001; Fig 2A and Table A in S1 Appendix). In addition, this was reflected in a con-
current increase of subjective confidence across trials (LMM: z = 68.20, p < 0.001; Fig 2B and
Table B in S1 Appendix). Overall, participants’ performance increased from 0.63 £ 0.01 (s.e.
m.) in phase 1 to 0.77 + 0.01 (s.e.m.) in phase 3 (paired t-test: ts3 = 13.32, p < 0.001) and their
confidence increased from 3.27 + 0.25 (s.e.m.) in phase 1 t0 6.06 + 0.27 (s.e.m.) in phase 3 (fs3
=17.26, p < 0.001).

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010580 October 3, 2022 4/25


https://doi.org/10.1371/journal.pcbi.1010580.g001
https://doi.org/10.1371/journal.pcbi.1010580

PLOS COMPUTATIONAL BIOLOGY

Confidence drives value-based learning in the absence of feedback

A 10 B 10 C
No. trials Stimulus:
in Phase 1:
0.94 0.8 —. 0.015 A

+ ———— 12

o — 8

S 0.8 o -

S Al oi © 0.6 v

3 x # - g Y 0.010 -

S Fy‘: > ] 2 B=0.002

B 0.7 X B No. trials = g p=0.033

o 17 \ in Phase 1 S 0.4 e

Q O =

o ’ 18 =

a 0.6 —— 15 © 0.005 A

m——— 12 0.2 1 )
. 9 J
0.5 ./’,»;
Phase 1 Phase 2 Phase 3 0.0 hé{e;:[ Phase 2 Phase 3 0.0 1
—20-15-10-5 0 5 10 15 20 25 3 "50-15-10-5 0 5 10 15 20 25 3 ' Lowest 2nd  2nd Highest
20-15-10-5 O _i)rllo 15 20 25 30 35 20-15-10-5 0 ?rll() 15 20 25 30 35 lowest highest 9
ria ria

CS value level

Fig 2. Performance and confidence. Block-averaged time courses are separated according to the duration of phase 1 (9-18 trials) and aligned to the beginning
of phase 2. Shaded areas indicate standard error of the mean. (A) Value-based learning. The accuracy of choices gradually increased across the phases with
feedback (phases 1 and 3), indicating that participants successfully learned the task. (B) Confidence. Reported confidence (normalized to [0; 1]) likewise
increases across the course of a block. Black lines indicate averages across CS value levels. (C) Confidence increases in phase 2 in dependence of the CS value
level. The parameter estimate 8 and the p-value are based on a linear model with value level as IV and average confidence slope in phase 2 as DV.

https://doi.org/10.1371/journal.pcbi.1010580.9002

The primary focus of our investigation was on the behavioral dynamics in phase 2, in which
no feedback was provided. Specifically, we were interested whether behavioral changes across
phase 2 in terms of choice consistency (see below), confidence ratings and subjective value rat-
ings showed signatures of self-reinforced learning.

Across trials in phase 2, performance did not change significantly, as shown by a non-sig-
nificant main effect of trial number (GLMM: z = -0.35, p = 0.726; Fig 2A and Table C in S1
Appendix). By contrast, confidence increased across phase 2 (LMM: z = 3.12, p = 0.002; Fig
2B and Table D in S1 Appendix) despite the absence of any new information. The confidence
increase in phase 2 was still measurable in phase 3: confidence in phase 3 was higher in blocks
including phase 2 (0.58 + 0.03 [s.e.m.]) compared to control blocks in which phase 2 was omit-
ted (0.55+ 0.03 [s.e.m.]; ts3 = 1.9, p = 0.032).

The increase in confidence in phase 2 was dependent on the overall value level of the chosen
CS. A linear model with phase 2 confidence slope as DV and value level as IV indicated a sig-
nificant positive effect of value level (8 = 0.002, p = 0.033). Thus, confidence slopes were on
average higher for more valuable CS (Fig 2C).

A second signature of self-reinforced learning is an increase of choice consistency, such
that participants become more consistent in their choices when repeatedly being faced with
the same pair of CS. Indeed, we found that choice consistency tended to increase in the course
of phase 2, indicated by a positive effect of CS pair repetition number (GLMM: z = 1.85,p =
0.064; Table E in S1 Appendix), where the repetition number # refers to the nth repetition of a
CS pair in phase 2. Fig 3A visualizes the increase in choice consistency by showing the average
choice consistency of participants between the first and second occurrence of a choice pair
(blue), as well as between the second and the third occurrence (orange). In particular, the pro-
portion of participants showing perfect choice consistency increased from 19% at the second
occurrence to 64% at the third occurrence.

Finally, we tested whether subjective value ratings before and after phase 2 would likewise
show a self-reinforcing effect, such that CS with higher objective value would gain subjective
value relative to CS with lower objective value. We performed a mixed linear regression analy-
sis with rating change (post- minus pre-phase-2) as a dependent variable and objective
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Fig 3. Changes in choice consistency and subjective value ratings in phase 2. (A) Choice consistency between first and second (in blue), as well as between
second and third choice (in orange) for identical CS pairs in phase 2. (B) Subjective value ratings. Depicted are the changes of the subjective value ratings (post-
phase-2 minus pre-phase-2), separately for each of the four CS value levels within a block.

https://doi.org/10.1371/journal.pcbi.1010580.9003

stimulus value as our main independent variable of interest. While the effect was in the
expected direction, the effect was far from being significant (LMM: z = 0.64, p = 0.522;
Table F in S1 Appendix).

Fig 3B visualizes the rating change as a function of CS value, aggregated by the relative CS
value order for simplicity reasons (note that while there were 5 CS per block, they were
assigned to 4 distinct value levels). Although the absence of an interaction is apparent, the low-
est-ranking CS (here displayed in blue) showed an overall rating decrease, while the higher-
ranking CS showed numeric increases. As we will elaborate in the discussion, ceiling effects or
regression to the mean effects may have masked a potential interaction. Yet, even in this case,
the effect is likely a weak one. In an exploratory analysis, we found that the value dependency
of rating changes showed a significant positive interaction with the length of phase 2 (LMM
interaction effect: z = 2.72, p = 0.006; Table G in S1 Appendix and S1 Fig). This suggests that
longer phases without feedback lead to a stronger effect of value on rating changes.

Computational models of value-based learning in the absence of feedback

In line with the neurocomputational similarities between reward- and confidence-based learn-
ing [11,12,30], we assume two basic feedback modes. In reward mode, observers maintain a
running estimate of expected values v, of each stimulus i that is updated by means of a conven-
tional Rescorla-Wagner learning rule. Learning is based on reward prediction errors, i.e. the
difference between the reward r that was obtained in a given trial and the expected value ¥, of
the chosen stimulus i:

V.=V, +o Ay (1)

Av=r—7, (2)

1

The speed of learning is controlled by a reward learning rate c,.
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Analogously, we assume that observers maintain a running average of the confidence ¢

they experienced in past choices of stimuli 4.

Co — €y + o Ac (3)

Ac=c—c, (4)

Thus, expected confidence ¢, is likewise learned and updated by a prediction error signal
— in this case the difference between current confidence ¢ and the preceding estimate of
expected confidence (confidence prediction error). Crucially, current confidence is a behav-
ioral measure obtained through subjective reports in a given trial. The update speed is con-
trolled by a distinct confidence learning rate .. Note that we put the index (i ) in brackets to
anticipate that we will distinguish between models that update expected confidence in either a
stimulus-specific (model ConfSpec) or stimulus-unspecific (model ConfUnspec) manner. Stim-
ulus-specific models maintain a running estimate of expected confidence for each stimulus
separately, whereas stimulus-unspecific models maintain a single stimulus-independent esti-
mate of expected confidence.

Our key hypothesis is that, in the absence of external feedback, value estimates are affected
by confidence prediction errors. For instance, when making a choice in which we are very con-
fident, and which thus will typically elicit a positive confidence prediction error, the value of
the chosen option is increased. This mechanism is controlled by the confidence transfer param-
eter y:

v, =V +7yAc (5)

Thus, the value of the chosen option (as predicted by the model) is updated in proportion
to confidence prediction errors. Note that while expected confidence is tracked throughout the
experiment, we assume that confidence-based value updates only apply when no external feed-
back is available.

The proposed model differs from the original perceptual learning model [12] in terms of
how a diffuse confidence prediction error signal takes effect: in the perceptual learning model,
confidence prediction errors shaped the weights of a simple sensory processing network,
requiring a Hebbian learning component in Eq (5) to ensure differential effects on signal and
noise weights (known as a three-factor learning rule; [31]). Since the present value-based deci-
sion task does not involve processing of a perceptually ambiguous stimulus, the model archi-
tecture is simpler and requires only the standard one-factor prediction error learning rule of
Eq (5).

Overall, the mechanism of self-reinforcement described by Eqs 3-5 augments initial prefer-
ences (which might have emerged in a phase with feedback) such that initially more preferred
options are further positively reinforced and less preferred options are less reinforced or even
negatively reinforced. As a consequence, the value landscape becomes more defined and ensu-
ing choices between choice options are made with higher confidence.

As a first control, we test a model in which the mere act of a choice — without a modulation
by confidence prediction errors — leads to a reinforcement of the associated stimulus:

Vi =Vt A (6)
This Choice model is reminiscent of the idea of choice-induced preferences changes [16],

which posits that values of chosen options are reinforced to reduce cognitive dissonance
between the chosen and the unchosen option.
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Table 2. Free model parameters.

Symbol

a,
B
o
221
Y
A

n

https://doi.org/10.1371/journal.pchi.1010580.t002

Lower bound

o © |0 |0 oo

-5

Upper bound

Table 1. Models.

Name Dynamics in the absence of external feedback

Static Values are unchanged / static

Deval Values of chosen options are subject to devaluation

Choice Values of chosen options are reinforced irrespective of confidence

ConfSpec Values of chosen options are updated in proportion to stimulus-specific confidence prediction errors

ConfUnspec | Values of chosen options are updated in proportion to stimulus-unspecific confidence prediction
errors

Perseveration | Choice perseveration bias, but values remain unchanged

https://doi.org/10.1371/journal.pchi.1010580.t001

Moreover, we consider the possibility that, in the absence of external feedback, stimuli are
subject to devaluation. Although subjects are aware that they will receive the rewards associ-
ated with all choices at the end of the experiment, the omission of a choice-contingent reward
display might nevertheless cause a devaluation of choice options. This third mechanism is
referred to as the Deval model and is implemented in a way that subjects perceive the absence
of trial-by-trial reward feedback as if they received an effective reward of zero. The reward pre-
diction error thus becomes 0 — v;:

V= v+, (0-9) = (1—a,) ¥, (7)

The speed of devaluation is controlled by a separate devaluation learning rate o,;. As before,
the update rule only affects the chosen stimulus i.

Finally, we tested a model in which choices likewise become more consistent in the absence
of external feedback, but in which the actual values are unchanged. This is accomplished by
means of a choice perseveration bias parameter 7 [32,33], which captures tendencies to persev-
erate (positive values) or alternate (negative values). The parameter 1 of this Perseveration
model affects choice probabilities and is described in the Methods section on ‘Model parame-
ters and model fitting’.

In sum, we therefore consider models in which values are either unaffected in the absence
of feedback, affected by devaluation, affected by the mere act of a choice or affected by confi-
dence prediction errors (stimulus-specific or -unspecific). Table 1 provides an overview of the
models under consideration and Table 2 provides information about the parameters of each

model.
Fitted values (mean + SEM)

Static Deval Choice ConfSpec ConfUnspec Perseveration
26 +.02 26 +.02 26 .02 23+.02 21+.02 28 +.02
23+.03 23+.03 22+.03 24+.03 27 +.03 22+.03

.14 +.03 .14 +.03

.0001 +.0001
6.68 +.98 8.31+1.09
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Quantitative model comparison: unspecific confidence prediction errors
guide value-based learning in the absence of external reward feedback

While the behavioral analyses provided partial evidence for self-reinforcing effects in the
absence of external feedback, they are agnostic about the underlying mechanism. To differenti-
ate between different possible mechanisms, and in particular the role of confidence therein, we
statistically compared the models introduced before. Three main research questions were asso-
ciated with this comparison. First, we aimed to clarify whether a confidence-based learning
signal interacts with subjective values and thereby partially explains the dynamics of choices in
the absence of external feedback. Second, in the context of confidence-based learning models
we were specifically interested in whether the computation of confidence prediction errors
relies on a running estimate of expected confidence that is computed in a stimulus-specific
(ConfSpec model) or stimulus-unspecific (ConfUnspec model) manner. And third, we tested
whether two simpler models may account for the behavior in phase 2: the Choice model, in
which subjective values are influenced by the mere act of a choice without a modulation by
confidence; and the Deval model, in which stimuli are subject to devaluation in the absence of
feedback.

We computed the model evidence by means of the Akaike information criterion (AIC;
[34]) in order to account for the varying complexity of models. As shown in Fig 4, we found
that the ConfUnspec model best accounted for the choice dynamics in phase 2. The model evi-
dence of the ConfUnspec model was significantly better compared to the evidence for the sec-
ond-best model, the ConfSpec model (paired t-test: ts3 = 4.14, p < 0.001), and compared to the
Static model (ts3 = 7.55, p < 0.001). A complementary analysis with the Bayesian information
criterion (BIC) confirmed the ConfUnspec model as the winning model (S2 Fig).

18.5 (3)

420.0 (2)

422.0 (3)

415 420 425
AIC

Fig 4. Model comparison. Models were compared by means of the Akaike information criterion (AIC). Each value
represents the average AIC of a model across participants (+ SEM). The number in parentheses indicates the number
of model parameters.

https://doi.org/10.1371/journal.pcbi.1010580.9004
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Opverall, this comparison thus supports our hypothesis that choice dynamics in value-based
decision making are partially driven by confidence-prediction-error-based learning signals.
Confidence prediction errors are likely computed in reference to a stimulus-unspecific base-
line, i.e. only a single estimate of expected confidence is maintained. By contrast, a model in
which the mere act of a choice affects subjective values regardless of confidence performed bet-
ter than an entirely static model, but was clearly inferior to the confidence models. This sug-
gests that choice confidence may be a key variable to consider when examining the effects of
choice-preference changes also in contexts other than the present value-based decision making
paradigm.

Finally, it is worth pointing out that the evidence against a simple devaluation model was
striking. Not only did this model perform worse than the Static model, an inspection of deval-
uation learning rates a,; also revealed that for 96.9% of the participants the best fit for o, was
exactly zero.

Temporal dynamics of the winning model: latent variables and posterior
predictive fits

To get a better picture of the inner workings of the ConfUnspec model, we inspected the time
courses of latent model variables as well as posterior predictive fits for performance and confi-
dence. The time course of the model’s expected value shows how value estimates become more
distinct over time and become arranged in the order of objective CS values (Fig 5A). This pat-
tern reflects the fact that, on average, participants successfully learned the task. Notably, due to
self-reinforcement the values continue to spread even in the absence of external feedback
(phase 2), reflected in a concurrent increase of predicted model performance (Fig 5B).
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Fig 5. Latent variables and posterior predictive fits of model ConfUnspec. All time courses represent averages across blocks and subjects, split according to
the duration of phase 1 (line styles) and the four CS value levels within a block (colors). (A) Expected values indicate current beliefs about the value of each
stimulus. (B) Posterior predictive fit for model performance: expected proportion correct responses based on choice probabilities. (C) Posterior predictive fit
for model confidence. Model confidence is computed based on the choice probability for the chosen CS (normalized to the range 0-1). Black lines indicate
averages across value levels. (D) Confidence slopes of (C) in phase 2 in dependence of the CS value level. (E) Expected confidence corresponds to an integration
of past confidence experiences using a Rescorla-Wagner-type learning rule. (F) Confidence prediction errors indicate the deviation of a momentary confidence
experience from expected confidence. (G) Absolute confidence prediction error.

https://doi.org/10.1371/journal.pcbi.1010580.9005
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To assess the posterior predictive fit for confidence, we computed model confidence as 2-
(Pchoice — 0.5) to ensure the same range 0-1 as for normalized behavioral confidence ratings.
As to be expected, the model’s confidence predictions likewise show an increase across phase 2
(Fig 5C). Moreover, confirming the behavioral results, the confidence increase is dependent
on the overall CS value level (Fig 5D). This result is independent evidence that the metacogni-
tive dynamics at the behavioral level are subject to a self-reinforcement mechanism.

Regarding the latent confidence variables we found that expected confidence likewise
increases over time, in line with the increase of confidence (Fig 5E). For expected confidence,
the differentiation with respect to the objective CS values is also evident, although less pro-
nounced than in the case of expected value. It is noteworthy that confidence prediction errors,
on average, are positive in phase 2 for all but the lowest-value CS (Fig 5F). One reason is that
the learning rates for expected confidence (e,) are relatively small for quite a few participants
(cf. Fig 6D), such that expected confidence reflects the increase of confidence only with a
delay. For those participants the expected confidence only slowly increases from its initial
value of zero and thus the learning signal (confidence minus expected confidence) is well
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Fig 6. Model parameters for the winning model ConfUnspec. Blue solid lines indicate parameter means, green dashed lines parameter medians. (A)
Histogram of the reward learning rate ¢,. (B) Histogram of the inverse decision noise parameter . (C) Histogram of the confidence transfer parameter y. (D)
Histogram of confidence learning rate a. (E) Scatter plot between reward learning rate ¢, and confidence transfer y. The black line indicates a linear fit to the
data; the correlation coefficient is based on a Pearson correlation.

https://doi.org/10.1371/journal.pcbi.1010580.9006
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approximated by confidence itself for a certain setting period. A likely second reason is that
the confidence value transfer (y) of positive CPEs itself triggers a self-reinforcing cycle: positive
CPEs increase the value of the chosen CS and thus the confidence in future choices of this CS,
which in turn increases the probability of positive CPEs.

Qualitative model comparison between self-reinforcing models

To qualitatively compare the ConfUnspec model to the two other self-reinforcing models and
to the Perseveration model, we first assessed the latent variables and posterior predictive fits
for performance and confidence of these models as well. The second-best model, ConfSpec, has
a confidence-based mechanism as well. As shown in S3A, S3B and S3E Fig, the latent variables
of ConfSpec — expected value, expected confidence, confidence prediction error — show largely
the same patterns as for ConfUnspec. The main difference is that the median confidence learn-
ing rates o, are, on average, lower for ConfSpec, which leads to a slower build-up of expected
confidence; this in turn results in larger average and absolute average prediction errors com-
pared to the winning ConfUnspec model (cf. Fig 5F and 5G) and thus more variable learning
signals. The fact that the time course of expected confidence does not timely track actual confi-
dence may be an indication that the ConfSpec is a less adequate fit to the data than ConfUnspec.
In terms of behavioral predictions for subjective values, performance and confidence, the
winning model ConfUnspec (Fig 5) is largely indistinguishable from the models ConfSpec
(S3E-S3G Fig) and Choice (S31-S3K Fig). In particular, all three models predict a spreading of
subjective values in phase 2, and as a consequence, an increase of confidence. As observed for
the behavioral data and the winning ConfUnspec model, ConfSpec and Choice likewise predict
that the increase of confidence in phases without feedback is value-dependent (S3H and S3L
Fig). In contrast, while the Perseveration model does not predict changes in confidence in
phase 2, it is the only model that predicts a flat type 1 performance curve. The reason is that
the Perseveration model leaves expected values unchanged and merely causes choices to
become more consistent (the perseveration bias 7 is positive for all participants; cf. Table 2).
On the other hand, the fact that the self-reinforcing models predict an increase in performance
(Figs 5B and S3F, S3]) has to be acknowledged as an incorrect prediction of the self-reinforcing
models. Overall, the posterior predictive fits of our models draw a somewhat opaque picture as
to why specifically the ConfUnspec model outperforms the two other self-reinforcing models.
To clarify whether the behavioral predictions of the models naturally arise from the models
or are caused by overfitting, we performed a second analysis in which we more generally
assessed model generative performance for a variety of parameter settings (S4 Fig). As for the
behavioral analyses, we assessed changes of confidence and performance in phase 2 (referred
to as Confidence effect and Performance effect), the interaction of confidence slopes and value
(Confidence x value effect) and changes of choice consistency in phase 2 (Consistency effect).
We found that two of the behaviorally observed effects are robustly produced by all self-
reinforcing models (i.e. ConfUnspec, ConfSpec, Choice) across parameter regimes: a positive
Confidence effect, i.e. an increase of confidence across phase 2, and a positive Consistency effect,
corresponding to an increase of choice consistency. By contrast, the Confidence x value effect,
i.e. higher confidence slopes for more valuable CS, emerges as a general effect only for the con-
fidence-based models ConfUnspec and ConfSpec. In addition, the ConfSpec model exhibits this
effect only for small values of o, whereas in the ConfUnspec model the effect arises robustly
across different settings of ¢.. Coincidentally, as noted above, we found that the fitted parame-
ters for o, were lower (and more frequently close to zero) in the ConfSpec model compared to
the ConfUnspec model. While not allowing for strong conclusions, this observation indicates
that the empirically observed Confidence x value effect arises most naturally for the ConfUnspec
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model and can only be achieved by special parameter combinations for the ConfSpec model.
This may be a potential explanation for the superior model fit of ConfUnspec.

Compared to the Confidence effect, the positive Performance effect (which was absent in the
empirical data) only emerges under specific parameter combinations for the ConfSpec and
ConfUnspec model. Specifically, the Performance effect arises precisely for parameter combina-
tions that also yield a Confidence x value effect. This makes sense: when observers become
more confident in more valuable CS this should go hand in hand with an increase in perfor-
mance. Importantly, the Performance effect is minuscule with slopes in the order of at most
0.001 (corresponding to a performance increase of 1% across 10 trials). This could explain why
no performance effect was observed in the behavioral data, even if behavior was shaped by a
confidence-based reinforcement mechanism. Finally, note that the Perseveration model does
not show any of the discussed effects to a meaningful degree within the assessed parameter
ranges.

Relationship between reward-based and confidence-based learning

We reasoned that, if learning with and without external feedback is based on a similar mecha-
nism, interindividual differences in reward-based learning may be predictive of interindividual
differences in confidence-based learning. While reward-based learning is characterized by the
reward learning rate ¢, the impact of confidence on subjective values is captured by the confi-
dence transfer parameter y. Fig 6 shows the distributions of parameters for ¢, and ¥, as well as
for the two remaining parameters of the winning model, namely decision noise  and confi-
dence learning rate a,.

We indeed found a strong correlation between the reward learning rate o, and the confi-
dence transfer parameter y in our winning model (r = 0.52, p < .001). As a control analysis,
and to ensure that both estimates are independent of one another, we correlated the reward
learning rate of the Static model to the confidence transfer parameter. Here, again, the effect
holds, with r = 0.56, p < .001 (Fig 6E). Thus, observers who show more volatile reward-based
updating of their value-based beliefs also show higher volatility for learning based on confi-
dence prediction errors, when feedback is no longer provided. Of note, the reward learning
rate o, was not correlated to the speed with which observers updated their estimates of
expected confidence, characterized by the confidence learning rate ¢, (r = —0.09, p = 0.498;
control analysis with Static model: r = —0.03, p = 0.842).

Discussion

We investigated the role of confidence-based learning signals in value-based learning and deci-
sion-making when external feedback is not available. Consistent with our hypothesis, we
found behavioral evidence for signatures of confidence-based self-reinforcement: an increase
of subjective confidence, increased choice consistency and a tendency towards self-reinforce-
ment of subjective values. A model-based analysis showed that a model which considered con-
fidence-based learning signals in phases without external feedback outperformed a static
model, as well as a model that predicted devaluation over time.

Overall, our findings thus corroborate the notion that confidence reflects an internal rein-
forcement learning signal, connatural to reinforcement signals induced through external
reward or cognitive feedback. The general mechanistic idea therein is that the brain triggers
global reward signals when actions or percepts yield higher confidence than expected, thereby
reinforcing underlying neural circuits that gave rise to these actions or percepts. For instance,
when practising an instrument, internal reinforcement signals may be triggered when the
musician is more confident in a particular performance than expected on the basis of previous
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attempts. In the context of perceptual learning, such signals may reinforce specific sensory
processing pathways that happen to generate percepts associated with above-average
confidence.

While the advantage of confidence learning signals is intuitive in these examples, the adap-
tive advantage of confidence-based learning is less clear in the context of value-based decision
making: why should subjective values change at all in the absence of new information?

One possibility is that confidence effects observed in value-based decision making are an
accidental side effect — an epiphenomenon — of a mechanism that otherwise proves advanta-
geous in the majority of learning scenarios. In this case, one may seek in vain for the benefits
of confidence-based learning in the specific case of value-based decision making. However,
another possibility is that self-reinforcement of subjective values may be a pragmatic strategy
in the face of a possible memory leakage when feedback is omitted. A classic example for such
leakage is retrieval-induced forgetting, i.e. the observation that our memories for items become
imprecise merely due to the mnemonic retrieval of these items [35-37]. In line with this
notion, a recent study has shown that the mere act of a choice between CS induces changes to
hippocampal representations of stimulus-outcome associations [28]. Thus, without external
feedback subjective values of stimuli may become noisy and thus less reliable, at least when
observers continue to interact with these stimuli.

In this latter view, confidence-based self-reinforcement of subjective values could be a
counter strategy for memory loss, trading a more black-and-white estimate of the value land-
scape (a result of self-reinforcement) with the alternative of an overall flattened landscape in
which choices become more indifferent (a result of unsystematic noise). In other words, while
it may seem irrational when choice options are transformed into a simplified categorical
scheme of either good or bad options, such a scheme may actually be more robust towards
mnemonic deterioration. Indeed, in the absence of a memory loss mechanism, the generative
performance analysis of the winning model ConfUnspec, and under more specific settings also
the ConfSpec model, indicates that self-reinforcement can even lead to a (potentially compen-
satory) increase in performance as values become more defined (cf. S4 Fig). Such a scenario
could explain the behavioral effects of stable type 1 performance with a parallel increase of con-
fidence and choice consistency.

Contrary to our expectation, we did not find a significant value by value change interaction for
the subjective value ratings before and after the phase without feedback (although the general
direction of results are consistent with our hypothesis). We consider two possible effects that may
have counteracted a value-dependent increase of subjective values in phase 2. First, participants
were instructed to use the continuous rating scale in an intuitive manner. Naturally, subjects
therefore tended to select the lowest and highest ratings for the CS they regarded least and most
valuable, respectively. However, in many cases, this intuitive usage of the rating scale effectively
left little room for even lower or higher post-phase-2 ratings. Thus, the hard constraints imposed
by the scale may represent a systematic bias in the opposite direction of our hypothesis.

Second, the possibility of noisy memory leakage over the course of phase 2 is expected to
lead to a regression to the mean for all CS. Although our proposed mechanism is thought to
mitigate this leakage, the regression-to-the-mean effect is likewise in the opposite direction of
our hypothesis and thus reduces the sensitivity to find the interaction. Higher statistical power
is necessary to clarify whether the observed null effect is real or a consequence of insufficient
statistical power. Alternatively, it is possible that participants simply were not aware of the sub-
tle value changes occurring in phase 2 and hence these changes were not reflected in the sub-
jective ratings.

In the logic of the best-fitting computational model (ConfUnspec), subjective values of cho-
sen CS are reinforced if, and only if, choice confidence is higher than expected on the basis of
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previous confidence experiences, i.e. in the case of positive confidence prediction errors. By
contrast, chosen CS are devalued if confidence prediction errors are negative. It is noteworthy
that the ConfUnspec model, i.e. a model with an unspecific reference (expected confidence) to
which momentary confidence levels are compared, outperformed a model in which expected
confidence was CS-specific. We considered this unlikely, a priori, since an unspecific reference
deprives the confidence prediction error from its natural convergence property: an unspecific
reference maintains the average confidence level across all CS so that prediction errors, in
principle, can be persistently positive (for CS judged to be of relatively high value) or negative
(for CS judged to be of relatively low value).

However, the similarity of posterior predictive fits between the self-reinforcing models Con-
fUnspec, ConfSpec and Choice (Figs 5 and S3A-S3L) gives reason to be cautious about a specific
mechanistic interpretation of the behavioral effects. While only the posterior predictive fits of the
three self-reinforcing models showed the Confidence x value effect, there is no ‘smoking gun’ that
discriminates between these models. Our analysis of model generative performance provided only
partial resolution in that the Confidence x value effect was found not to be a natural property of the
Choice model and is produced only under specific parameter settings for the ConfSpec model.
Thus, the Confidence x value effect arises most naturally in the ConfUnspec model. The fact that
this effect is more robust across different parameters for the ConfUnspec model means that these
parameters have more flexibility which could be a potential explanation for the superior model fit.

The present work thus provides evidence that value-based learning in the absence of exter-
nal feedback is shaped by some form of self-reinforcement, but the specific proposed mecha-
nism of the ConfUnspec model is mainly supported by our quantitative model comparison and
not by a clear falsification of the other self-reinforcement models. Only the Choice model falls
off to a certain degree as it does not generally produce a Confidence x value effect and thus
doesn’t support our proposed adaptive mechanism of self-reinforcement, i.e. protecting
against memory leakage in phases where subjective preferences are not refreshed by external
feedback. Combined with the fact that the Choice model did not perform well in the quantita-
tive model comparison, ranking even behind the Perseveration model, we suggest that a confi-
dence-based rather than a mere choice-based self-reinforcement mechanism is likely.
Disambiguating between the two confidence models might necessitate an experimental para-
digm that is tailored to the differences between these models, for instance by introducing con-
ditions that manipulate the degree to which the unspecific prediction error references of the
ConfUnspec model are problematic for learning (e.g., ‘roving’ conditions; [37]).

A key parameter in both confidence-based models is the confidence-transfer parameter y,
which controls the degree to which confidence prediction errors affect subjective values when
no external feedback is available. By contrast, in the case of external feedback, the update of
subjective values is based on reward prediction errors and governed by the learning rate
parameter o, Intriguingly, we found that both parameters are strongly correlated, such that
participants with more volatile reward-based value learning also showed more volatile confi-
dence-based value learning.

This finding fits well with our motivating hypothesis that learning based on external reward
feedback and internal confidence-based feedback share similar — perhaps the same — underly-
ing mechanisms. The parameters y and a, thus may both characterize the tuning of one and
the same learning machinery, observed in scenarios with and without external feedback.
Together with the observed neurobiological parallel of learning based on internal and external
feedback [10-12], the shared algorithmic logic of the respective learning signals [12,38,39],
and the shared phenomenology [15], this parametric correspondence adds another piece of
evidence to the view that confidence-based learning is based on an internally-triggered rein-
forcement learning mechanism.
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Our results may have an interesting implication for one of the most prominent and contro-
versial effects in the decision-making literature — choice-induced preference changes
[16,17,19]. Here too, changes in subjective values are induced in the absence of external feed-
back, putatively caused by the mere act of the choice itself. Surprisingly, to our knowledge,
almost no study has yet examined the role of choice confidence in choice-induced preference
changes (for an exception, see [40]). Indeed, taking Festinger’s idea of cognitive dissonance as
a cause of these preference changes seriously, it would predict a role of confidence that is in
opposition to our model.

According to Festinger, subjective values are increased for chosen options (and decreased
for unchosen options) as a form of post-hoc rationalization, to reduce the dissonance that
would arise otherwise when reflecting on the positive attributes of an unchosen option. The
larger the dissonance, the stronger the expected preference changes. Since the dissonance will
be stronger for choices that are subjectively perceived as harder, those choices should be asso-
ciated with a lower level of choice confidence. Thus, Festinger’s theory predicts that higher
choice confidence leads to higher preference changes for the chosen option, whereas our pro-
posed model predicts the opposite (note however, that our model does not consider changes
for the unchosen option). It will be an interesting avenue for future research to systematically
investigate the interplay of choice confidence and subjective values changes and thereby clarify
which prediction best passes the empirical evidence. Our finding suggests that choice confi-
dence is a key variable to consider in this question.

An assumption made in the present study is that self-reinforcement is restricted to
instances without external reinforcement or cognitive feedback. However, this assumption
was not explicitly tested and, at least from a conceptual point of view, the proposed self-rein-
forcement mechanism in our models could be readily implemented as a modulation of (exter-
nal) feedback-based model updates, or as a mechanism parallel to those. To test this possibility
experimentally, one could introduce an alternative phase 2 that is matched in every respect
except the fact that external feedback is provided.

A limitation of behavioral results is that most effects are not very strong, including an
absent main effect for the predicted change of subjective values, which was significant only for
the longest duration of phase 2. This suggests that self-reinforcement effects in the absence of
external feedback are relatively subtle, or, more unfavourably for the present study, a false posi-
tive. Either way, it is clear that investigating the choice and confidence dynamics in the absence
of external feedback calls for large sample sizes. Moreover, our results suggest that the emer-
gence of self-reinforcement effects at the level of conscious report might require no-feedback
phases of sufficient length.

In conclusion, our study provides evidence that confidence-based learning signals can
explain significant dynamics of value-based decision making in the absence of external feed-
back, thereby extending previous findings in the specific domain of perceptual learning to one
of the most fundamental forms of human learning: instrumental conditioning. Our results
indicate that a previously suggested conceptual and algorithmic parallel between reward-
based feedback and cognitive feedback (e.g., “correct’/’incorrect”; [30]) may have to be
extended to internal cognitive feedback — confidence — as well.

Methods
Ethics statement

Ethical approval for this study was granted by the ethics committee of Charité, Universitdtsme-
dizin Berlin. Written informed consent was obtained from all participants prior to the
experiment.
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Participants

Sixty-six healthy volunteers (age: 29 + 8.4 [s.d.]; gender: 40 female) were recruited via online
advertisement and word of mouth. Participants were 18 or above and had normal or corrected
to normal vision. Their participation was remunerated depending on performance (on average
16.25€). Two participants were excluded due to low task performance (<55% correct
responses). The sample size calculation was based on a forward simulation. Choices and confi-
dence ratings (based on the choice probability) were sampled from the generative models
using the number of blocks and trials of the empirical experiment. We used educated guesses
for all parameters (o, = 0.1, = 0.1, ¢, = 0.1, 8 = 1/3, y = 1; disclosure: the model Persev-
eration was tested post-hoc). The sample size was determined such that the model evidence
(AIC) of all non-static models could be significantly dissociated from the static model with at
least 80% probability (using a two-tailed paired t-test).

Mixed effects modeling

All analyses involving behavioral learning effects were performed with mixed effects models as
implemented in the Python package statsmodels (for linear models;[41]) and the lme4 and
ImerTest packages in R (for logistic models). Subject was a random effect and block a nested
random effect. Fixed effects were the block-level predictors block_value_level (18, 23 and 28,
i.e. the overall value level in a block), block_difficulty (3 or 6, i.e. the average absolute value dif-
ference in a block), block_stimulus_type (0 or 1, i.e. stimulus types fractals or Chinese symbols),
block_ntrials_phasel (duration of phase 1) and block_ntrials_phase2 (duration of phase 2).
Trial-level predictors were trial_number, trial_difficulty (the absolute value difference between
the two CS in a trial) and trial_value_chosen (i.e. the value of the chosen CS in a trial).

Experimental task and procedure

The instrumental conditioning task consisted of 11 blocks with an identical structure (Fig 1A).
In each block, participants had to learn about the monetary values of five new conditioned sti-
muli (CS). Each block started with an initial training phase (phase 1) of variable length (9, 12,
15 or 18 trials) in which feedback was provided. The training phase was followed by a critical
second phase (5, 10 or 15 trials) without feedback. In two blocks, phase 2 was omitted as a con-
trol condition. At the beginning of phase 2, participants were informed that no feedback
would be provided after choices, but also, that they would receive the associated rewards at the
end of the experiment. A block was completed by a third phase in which feedback was again
provided. The duration of phase 3 was such that, together with phase 1 and phase 2, each block
comprised exactly 27 trials.

In each trial (Fig 1B), participants were presented with a choice between two CS on the left
and right of a fixation cross, respectively. To choose e.g. the left CS, participants moved the
mouse cursor to the left. The choice movement activated a 11-point confidence scale that
appeared under the chosen CS. The confidence scale consisted of 11 bars of increasing height
(maximum height for maximum confidence). Each bar was labeled with the respective rating
(0 to 10). In addition, the first and last bar, corresponding to the minimum and maximum
confidence rating, were labeled with “Guessing” and “100% sure”. Higher confidence could be
indicated by moving the mouse further to the left (or right, when the right CS was chosen),
which highlighted all bars up to the respective confidence level. To make the choice/confidence
experience more plastic, the CS increased in size proportional to the selected confidence. Par-
ticipants could still switch their choice during the confidence selection by clicking the right
mouse button, although this was rarely the case. When participants were satisfied with their
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response, they clicked the left mouse button. At this point, the unchosen CS disappeared and
the chosen CS remained on the screen for 1000ms.

In phases 1 and 3, participants received monetary rewards for their choices. Rewards were
presented in the form of a scratch ticket with 50 initially grey fields. The 50 fields were succes-
sively, but quickly, revealed such that each field was either a blank (in which case the field
remained grey) or a hit (in which case a 1-Euro coin appeared on the field). We chose this
reward presentation style — over a more conventional reward display with explicit numbers
— to induce a mere “feeling” for the value of the CS rather than an explicit cognitive representa-
tion of rewards. The revealed scratch card remained on the screen for 500ms and then disap-
peared in an indicated slit below the card. The presentation in phase 2 was similar except that
the fields of the scratch card were not revealed. At the end of the experiment, the overall
reward was determined by means of 33 draws from an imaginary lottery box, which comprised
all 1-Euro coins and blanks (including those from phase 2 which were initially not revealed)
collected during the experiment. The average reward was 16.25€ (SEM 1.64€).

To avoid a learning transfer between blocks, different reward schedules were applied (and
indeed there was no main effect of block on performance, p > 0.5). First, each block was
assigned one of three different overall average reward levels (18, 23 and 28€ per scratch card).
Second, the mean value difference between CS in a block was either 3€ or 6€, which affected
the average performance (3€: 68.8% correct; 6€: 77.1% correct). And third, in each block two
CS were of identical value. Specifically, there were four different possible values per block to
which the five CS were randomly assigned. Rewards were drawn from a truncated normal dis-
tribution with the given mean for a CS and a standard deviation of 10€. Since together, these
conditions constitute more possible combinations than blocks, the conditions were pseudo-
randomly distributed across the blocks. Similar to the variable phase durations, the main pur-
pose was to prevent participants from learning about the task or reward structure and thus to
enforce ‘learning from scratch’ in each block.

In half of the blocks, the CS were multicolor fractals, in the other half monocolor Chinese
symbols. There was no meaningful performance difference between the stimulus types (frac-
tals: 72.2% correct; Chinese symbols: 73.6% correct). The size of the CS was between 10.7 and
12.8 degrees of visual angle depending on the confidence level. All CS appeared roughly an
equal number of times in each phase of a block.

Before and after phase 2, a rating scale appeared in which participants rated the subjective
value of each CS in the current block on a continuous scale. The extremes of the scales were
labeled with a scratch card of only blanks (lower end) and only 1-Euro coins (upper end). The
scale itself was a horizontal bar with a color gradient from black (lower end) to gold (upper
end). To select their rating, participants moved a thin sliding vertical bar across the rating
scale (using the computer mouse).

The experiment was programmed in Python using PsychoPy [42]. The experiment took place
in a moderately lighted laboratory room in front of a computer screen (1920x1080 pixels,
47.7x26.8cm; viewing distance: 60cm). The entire experiment was operated by a computer mouse.

Model parameters and model fitting

The model was fitted for each subject individually, using all 11 blocks of the experiment. In the
beginning of each block of the fitting procedure, the latent variables expected value ¥, and
expected confidence c; were initialized to zero, given that new CS appeared in each block. The

choice probability in each trial was computed via a softmax action selection rule [43]:

1
1 + e Plrign—=7iep)

pright = (8)
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pleft =1- pright (9)

where prigne and pieq are the choice probabilities for the CS left and right of the center, respec-
tively. The slope 3 of the logistic function, also referred to as the inverse decision noise parame-
ter, accounts for the stochasticity of choices. A value § = 0 implies that agents respond
completely at random, whereas higher values of § indicate that agents choose more determin-
istically the CS associated with the highest expected value.

Importantly, the choice probability in Eq 8 was also used to determine the CS to which the
confidence-value transfer (Eq 5) was applied during model fitting (CSyigp if prighte > 0.5 else
CSjer). Updating the CS actually chosen by the participants would have not been valid, as in
this case the model would have had access to the same information it aims to predict.

In case of the Perseveration model, the choice probability in the absence of external feed-
back contains a perseveration bias as follows [32,33]:

1

10
1+e*ﬂ[(“righﬁ"’zeﬂ)w(ffigm*fiﬁ )l ( )

P

right =

where Ciﬁy,ight = 1 if the CS corresponding to the CS on the left/right side was chosen in the
previous encounter of the CS pair (C7 ., = 0 otherwise). An individual with a positive/nega-
tive parameter 77 would have a bias towards repeating/alternating the previous response.

Parameters were fitted by minimizing the negative log-likelihood (based on Eqs 8 and 9)
using the optimize.minimize() function of the Python SciPy package [44] in combination with
an initial coarse-grained grid-search to determine initial values for each parameter. We com-
puted two optimization SciPy routines in parallel — the gradient-based L-BGFS-B algorithm
[45] and the conjugate-direction-based Powell algorithm [46] — and chose the parameters of
whichever method resulted in a smaller negative log-likelihood.

Table 2 provides an overview about imposed bounds for all parameters. Note that while the
learning rate parameters ¢, o, and o,; are bound to the range [0; 1], the confidence transfer
parameter y is not a learning rate and thus has no natural upper bound. Note that the two new
parameters of the model proposed here, the confidence parameters o, and y, were largely uncor-
related (winning model: r = -0.05, p = 0.712), indicating that neither of them was redundant.

Model and parameter recovery

To ensure that all models are identifiable with sufficient precision, we performed a model recov-
ery analysis. For each model we simulated choice and confidence data for a range of different
parameter settings. k™ different parameter configurations were implemented, where N is the
number of parameters in each model (see Fig 4) and k is the number of different values imple-
mented for each parameter (a,/a,,/c,: range 0.1-1, equidistant steps, k = 5; f: range 0.1-1.6,
doubling steps, k = 5; y: range 1-100, exponential steps, k = 5; A: range 0.5-5, exponential steps,
k = 5; n: range -1.5-1.5, equidistant steps, k = 6). For each model and parameter combination,
we simulated 250 datasets (i.e. subjects). Experimental designs for each dataset were randomly
sampled from the design generation function that was used in the behavioral experiment.
Model recovery was quantified by the probability that datasets generated with a given
model X were best fitted by a model Y, p(fit = Y|gen = X), as well as the reverse probability that
datasets best fitted by a given model Y were generated by a model X, p(gen = X|fit = Y). To
obtain p(fit = Y|gen = X), for all datasets created with a given generative model X, we com-
puted the frequency with which model Y had the lowest AIC value among the competing
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models (each model was fitted to each dataset). Conversely, to obtain p(gen = X|fit = Y), for all
datasets that were best-fitted by model Y (i.e. lowest AIC value), we computed the frequency
with which datasets were generated by model X. For p(gen = X|fit = Y), we made sure that the
base rate was identical across models, i.e. that the number of datasets generated was equal for
all models despite differences in the number of model parameters (and thus in the number of
combinatorial parameter settings).

S5 Fig shows the results of the model recovery analysis, expanded for different values of a,
and S, the two parameters that are common to all models. Overall, we find excellent model
recovery. More precisely, p(fit|gen) is generally much higher when the generative and fitting
model are identical relative to when they are different. Perhaps even more importantly, the
reverse probability matrix, p(gen|fit), likewise demonstrates good model identifiability (S6
Fig). That is, datasets that are best fitted by a given model are, in all likelihood, also generated
by this model. This latter analysis is an important prerequisite for any conclusion about under-
lying mechanisms in our empirical data that derive from the superior model fit of the ConfUn-
spec model.

Notably, the model that performs worst in terms of model identifiability is the Static model,
both in terms of p(fit|gen) and p(gen|fit). In quite a few instances, datasets generated by the
Static model are confused with one of the other models (except the Deval model). This shows
that due to random variation and limited trial numbers (which matched the empirical experi-
ment), the choice dynamics are sometimes better described by more complex models; con-
versely, the Static model is sometimes the best-fitting model although the data is generated by
more complex models (because the dynamics generated by the complex models are not distinct
enough to compensate for the complexity punishment). Importantly, instances in which data is
best fitted by our main models of interest (i.e. the self-reinforcing models ConfUnspec, ConfSpec
and Choice) correspond most frequently to datasets that are also generated by these models.

To assess the quality of parameter recovery for the winning model ConfUnspec, we generated
datasets (i.e. subjects) for which we systematically varied each model parameter with 250 equi-
distant values between sensible lower and upper bounds (e,: range 0.01-1; f: range 0.02-2; a:
range 0-1; y: range 0-10). As in the model recovery analysis, experimental designs for each
dataset were randomly sampled from the design generation function that was used in the behav-
ioral experiment. Parameter recovery correlation matrices were constructed by correlating each
varied generative parameter to all fitted parameters. To make the analysis robust against the spe-
cific settings of the respective other parameters, we performed this process for each node of the
coarse parameter grid of size k™ described above. For example, if the parameters of the coarse
parameter grid were (o, = 0.1, 8= 0.4, a. = 0.1, y = 1), these exact parameters were used in the
data generation for the construction of a correlation matrix, except for the parameter that was
systematically varied for the estimation of a specific row in the correlation matrix.

S7 Fig shows that parameter recovery works well across various parameter regimes. Two
edge cases deserve mention. First, we found that too low values for the confidence transfer
parameter y impair the ability to recover the confidence learning rate o, (if confidence has little
effect on value estimates, the learning rate carries little weight either). Second, if choices
become increasingly random (small values of ), recovery is likewise impaired to a certain
degree. Nevertheless, for typical parameter values in our empirical data parameter recovery is
sufficiently precise.

Model generative performance

To better understand the qualitative behavior of the four best fitting models (ConfUnspec, Con-
fSpec, Choice, Perseveration) we simulated choice and confidence data across different
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parameter settings. Specifically, we systematically varied parameters that influence the behav-
ioral dynamics in phase 2, i.e. a, (range 0-1 in steps of 0.5) and log y (range 0-4 in 8 equidis-
tant steps) for the ConfUnspec and ConfSpec model, A (range 0.5-10 in 7 exponential steps) for
the Choice model and 7 (range —1.5-1.5 in steps of 0.5) for the Perseveration model. Since we
found that the effects of interest in phase 2 are not sensitive to the precise settings of a, and
(which shape behavior in phases with feedback), we fixed both parameters at 0.2, close to the
average in the behavioral data and close to typical values in this context. For each model and
parameter combination, 250 datasets were simulated.

Based on the simulated data, we computed four effects of interest: 1) Performance effect,
defined as the average slope of proportion correct responses across the trials of phase 2; 2) Con-
fidence effect, defined as the average slope of confidence across the trials of phase 2; 3) Confi-
dence x value effect, defined as the slope for the interaction of CS-specific confidence slopes
and corresponding CS values; 4) Consistency effect, defined as the increase of the proportion of
consistent choices between the first and second occurrence of a choice pair versus the second
and third occurrence of a choice pair.

Supporting information

S1 Appendix. Table A. Mixed logistic regression on the dependent variable correct in phases
1 and 3. Performance increases significantly across phases with feedback (significant positive
effect of trial_number). Table B. Mixed linear regression on the dependent variable confidence
in phases 1 and 3. Confidence increases significantly across phases with feedback (significant
positive effect of trial_number). Table C. Mixed logistic regression on the dependent variable
correct in phase 2. Performance does not change significantly (non-significant effect of trial_-
number). Table D. Mixed linear regression on the dependent variable confidence in phase 2.
Confidence increases significantly (significant positive effect of trial_number). Table E. Mixed
logistic regression on the dependent variable consistent (coding whether a choice was consis-
tent to the choice in the previous appearance of a CS pair) in phase 2. Consistency increases
significantly with the number of appearances of a CS pair (significant positive effect of trial_-
pair_repeat_nr). Table F. Mixed linear regression on the dependent variable rating change
(subjective value rating post-phase-2 minus rating pre-phase-2). Ratings did not increase sig-
nificantly with the objective value of the respective CS (no significant effect of value). Table G.
Mixed linear regression on the dependent variable rating change (subjective value rating post-
phase-2 minus rating pre-phase-2). In comparison to the regression analysis in S6 Table, here
we included the interaction of objective CS value (value) and the duration of phase 2 (block_n-
trials_phase2).

(PDF)

S1 Fig. Effect of value on rating changes (post-phase-2 minus pre-phase-2) in dependence
of phase 2 duration. Regression coefficient for the effect of value on rating changes across
varying durations of phase 2.

(TIF)

S2 Fig. Model evidence and N of free parameters. Average Bayesian information criterion
with s.e.m. across participants for all computational models considered and ordered by model
fit. The number of parameters is displayed in parentheses. In line with the Akaike information
criterion (see Fig 4 in the manuscript), ConfUnspec is the winning model.

(TIF)
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S3 Fig. Latent variables and behavioral predictions of the models ConfSpec, Choice and
Perseveration. See Fig 5 for details.
(TIF)

$4 Fig. Generative model performance for four key effects in dependence of different
parameter settings. Model generative performance was assessed for the four best-performing
models (ConfUnspec, ConfSpec, Choice, Perseveration). Model-based effects are shown as bar
graphs, behavioral effects as dashed lines. Performance effect: model-based and behavioral
graphs depict linear performance slopes in phase 2. Confidence effect: model-based and behav-
ioral graphs depict linear confidence slopes in phase 2. Confidence x value effect: model-based
and behavioral graphs depict slopes for the interaction of the Confidence effect and bandit
value (cf. Fig 2C). Consistency effect: model-based and behavioral graphs depict the increase in
choice consistency between the first and second occurrence of a choice pair versus the second
and the third occurrence (cf. Fig 3A). Error bars for model-based effects indicate standard
errors of the mean across 250 simulated subjects.

(TIF)

S5 Fig. Model recovery (1): probability that a generative model gen is best fitted by a test
model fit. Rows represent generative models and each column within a row indicates the
probability that a dataset was best fitted by a particular model. Note that the order of models is
the same along both axes, but labels were omitted on the x-axis due to space constraints.

(TIF)

S6 Fig. Model recovery (2): probability that a dataset best fitted by model fit was generated
by model gen. Rows represent the datasets in which the given model was best-fitting and each
column within a row indicates the probability that the datasets were generated by a particular
model. Note that the order of models is the same along both axes, but labels were omitted on

the x-axis due to space constraints.
(TIF)

S7 Fig. Parameter recovery. Pearson correlation matrices between generative parameters and
fitted parameters in dependence of different settings for 8 and y. The fixed f and y values pro-
vided in the figure thus indicate the parameter values that were used for data generation in the
construction of a recovery matrix. An exception is when f and y were themselves varied-in
these cases, the indicated values for  and y do not apply; instead, different columns constitute
internal replications for the recovery of 5, and different rows constitute internal replications
for the recovery of y.

(TIF)
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